Learning from graph data using Keras

Overview

Steps to run =>

  • Download the cora dataset from this link : https://linqs.soe.ucsc.edu/data
  • unzip the files in the folder input/cora
  • cd code
  • python eda.py
  • python word_features_only.py # for baseline model 53.28% accuracy
  • python graph_embedding.py # for model_1 73.06% accuracy
  • python graph_features_embedding.py # for model_2 76.35% accuracy

Learning from Graph data using Keras and Tensorflow

Cora Data set Citation Graph

Motivation :

There is a lot of data out there that can be represented in the form of a graph in real-world applications like in Citation Networks, Social Networks (Followers graph, Friends network, โ€ฆ ), Biological Networks or Telecommunications.
Using Graph extracted features can boost the performance of predictive models by relying of information flow between close nodes. However, representing graph data is not straightforward especially if we donโ€™t intend to implement hand-crafted features.
In this post we will explore some ways to deal with generic graphs to do node classification based on graph representations learned directly from data.

Dataset :

The Cora citation network data set will serve as the base to the implementations and experiments throughout this post. Each node represents a scientific paper and edges between nodes represent a citation relation between the two papers.
Each node is represented by a set of binary features ( Bag of words ) as well as by a set of edges that link it to other nodes.
The dataset has 2708 nodes classified into one of seven classes. The network has 5429 links. Each Node is also represented by a binary word features indicating the presence of the corresponding word. Overall there is 1433 binary (Sparse) features for each node. In what follows we only use 140 samples for training and the rest for validation/test.

Problem Setting :

Problem : Assigning a class label to nodes in a graph while having few training samples.
Intuition/Hypothesis : Nodes that are close in the graph are more likely to have similar labels.
Solution : Find a way to extract features from the graph to help classify new nodes.

Proposed Approach :


Baseline Model :

Simple Baseline Model

We first experiment with the simplest model that learn to predict node classes using only the binary features and discarding all graph information.
This model is a fully-connected Neural Network that takes as input the binary features and outputs the class probabilities for each node.

Baseline model Accuracy : 53.28%

****This is the initial accuracy that we will try to improve on by adding graph based features.

Adding Graph features :

One way to automatically learn graph features by embedding each node into a vector by training a network on the auxiliary task of predicting the inverse of the shortest path length between two input nodes like detailed on the figure and code snippet below :

Learning an embedding vector for each node

The next step is to use the pre-trained node embedding as input to the classification model. We also add the an additional input which is the average binary features of the neighboring nodes using distance of learned embedding vectors.

The resulting classification network is described in the following figure :

Using pretrained embeddings to do node classification

Graph embedding classification model Accuracy : 73.06%

We can see that adding learned graph features as input to the classification model helps significantly improve the classification accuracy compared to the baseline model from **53.28% to 73.06% ** ๐Ÿ˜„ .

Improving Graph feature learning :

We can look to further improve the previous model by pushing the pre-training further and using the binary features in the node embedding network and reusing the pre-trained weights from the binary features in addition to the node embedding vector. This results in a model that relies on more useful representations of the binary features learned from the graph structure.

Improved Graph embedding classification model Accuracy : 76.35%

This additional improvement adds a few percent accuracy compared to the previous approach.

Conclusion :

In this post we saw that we can learn useful representations from graph structured data and then use these representations to improve the generalization performance of a node classification model from **53.28% to 76.35% ** ๐Ÿ˜Ž .

Code to reproduce the results is available here : https://github.com/CVxTz/graph_classification

Owner
Mansar Youness
Mansar Youness
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop ๐Ÿง  ๐Ÿ—ผ This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
YOLOv5 ๐Ÿš€ is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 ๐Ÿš€ is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

้˜ฟๆ‰ 73 Dec 16, 2022
This repository provides the official code for GeNER (an automated dataset Generation framework for NER).

GeNER This repository provides the official code for GeNER (an automated dataset Generation framework for NER). Overview of GeNER GeNER allows you to

DMIS Laboratory - Korea University 50 Nov 30, 2022
RP-GAN: Stable GAN Training with Random Projections

RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna

Ayan Chakrabarti 20 Sep 18, 2021
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | ็ฎ€ไฝ“ไธญๆ–‡ Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

CV Newbie 28 Dec 13, 2022
Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.

KK Blender Shader Pack A plugin and a shader to get you started with setting up an exported Koikatsu character in Blender. The plugin is a Blender add

166 Jan 01, 2023
Joint parameterization and fitting of stroke clusters

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Al

Dave Pagurek 44 Dec 01, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
NumPy๋กœ ๊ตฌํ˜„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์ž…๋‹ˆ๋‹ค. (์ž๋™ ๋ฏธ๋ถ„ ์ง€์›)

Deep Learning Library only using NumPy ๋ณธ ๋ ˆํฌ์ง€ํ† ๋ฆฌ๋Š” NumPy ๋งŒ์œผ๋กœ ๊ตฌํ˜„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์ž…๋‹ˆ๋‹ค. ์ž๋™ ๋ฏธ๋ถ„์ด ๊ตฌํ˜„๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ž๋™ ๋ฏธ๋ถ„ ์ž๋™ ๋ฏธ๋ถ„์€ ๋ฏธ๋ถ„์„ ์ž๋™์œผ๋กœ ๊ณ„์‚ฐํ•ด์ฃผ๋Š” ๊ธฐ๋Šฅ์ž…๋‹ˆ๋‹ค. ์•„๋ž˜ ์ฝ”๋“œ๋Š” ์ž๋™ ๋ฏธ๋ถ„์„ ํ™œ์šฉํ•ด ์—ญ์ „ํŒŒ

์กฐ์ค€ํฌ 17 Aug 16, 2022
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022
Deep Ensemble Learning with Jet-Like architecture

Ransomware analysis using DEL with jet-like architecture comprising two CNN wings, a sparse AE tail, a non-linear PCA to produce a diverse feature space, and an MLP nose

Ahsen Nazir 2 Feb 06, 2022