This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

Related tags

Deep LearningPFD_Net
Overview

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer

Python >=3.6 PyTorch >=1.6

This repo is the official implementation of "Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer(PFD), Tao Wang, Hong Liu, Pinghao Song, Tianyu Guo& Wei Shi" in PyTorch.

Pipeline

framework

Dependencies

  • timm==0.3.2

  • torch==1.6.0

  • numpy==1.20.2

  • yacs==0.1.8

  • opencv_python==4.5.2.54

  • torchvision==0.7.0

  • Pillow==8.4.0

Installation

pip install -r requirements.txt

If you find some packages are missing, please install them manually.

Prepare Datasets

mkdir data

Please download the dataset, and then rename and unzip them under the data

data
|--market1501
|
|--Occluded_Duke
|
|--Occluded_REID
|
|--MSMT17
|
|--dukemtmcreid

Prepare ViT Pre-trained and HRNet Pre-trained Models

mkdir data

The ViT Pre-trained model can be found in ViT_Base, The HRNet Pre-trained model can be found in HRNet, please download it and put in the './weights' dictory.

Training

We use One GeForce GTX 1080Ti GPU for Training Before train the model, please modify the parameters in config file, please refer to Arguments in TransReID

python occ_train.py --config_file {config_file path}
#example
python occ_train.py --config_file 'configs/OCC_Duke/skeleton_pfd.yml'

Test the model

First download the Occluded-Duke model:Occluded-Duke

To test on pretrained model on Occ-Duke: Modify the pre-trained model path (PRETRAIN_PATH:ViT_Base, POSE_WEIGHT:HRNet, WEIGHT:Occluded-Duke) in yml, and then run:

## OccDuke for example
python test.py --config_file 'configs/OCC_Duke/skeleton_pfd.yml'

Occluded-Duke Results

Model Image Size Rank-1 mAP
HOReID 256*128 55.1 43.8
PAT 256*128 64.5 53.6
TransReID 256*128 64.2 55.7
PFD 256*128 67.7 60.1
TransReID* 256*128 66.4 59.2
PFD* 256*128 69.5 61.8

$*$means the encoder is with a small step sliding-window setting

Occluded-REID Results

Model Image Size Rank-1 mAP
HOReID 256*128 80.3 70.2
PAT 256*128 81.6 72.1
PFD 256*128 79.8 81.3

Market-1501 Results

Model Image Size Rank-1 mAP
HOReID 256*128 80.3 70.2
PAT 256*128 95.4 88.0
TransReID 256*128 95.4 88.0
PFD 256*128 95.5 89.6

Citation

If you find our work useful in your research, please consider citing this paper! (preprint version will be available soon)

@inproceedings{wang2022pfd,
  Title= {Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer},
  Author= {Tao Wang, Hong Liu, Pinhao Song, Tianyu Guo and Wei Shi},
  Booktitle= {AAAI},
  Year= {2022}
}

Acknowledgement

Our code is extended from the following repositories. We thank the authors for releasing the codes.

License

This project is licensed under the terms of the MIT license.

You might also like...
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Official implementation of our paper
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

An official implementation of
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Official code implementation for
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

StyleGAN2 - Official TensorFlow Implementation
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

 Old Photo Restoration (Official PyTorch Implementation)
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Comments
  • 精度达不到论文里面的数据

    精度达不到论文里面的数据

    作者您好,我在1501上测试了一下 就改了 /home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/configs/Market1501/skeleton_pfd.yml 这个文件,里面的参数并没有改动 改了权重的路径,和文件夹的路径 其他都没变,如何训练300轮次后 我选择最高300轮的 /home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/logs/Market/pfd_net/skeleton_transformer_300.pth 去测试 结果是 : 2021-12-28 18:23:39,417 PFDreid.test INFO: Validation Results 2021-12-28 18:23:39,417 PFDreid.test INFO: mAP: 88.2% 2021-12-28 18:23:39,418 PFDreid.test INFO: CMC curve, Rank-1 :94.8% 2021-12-28 18:23:39,418 PFDreid.test INFO: CMC curve, Rank-5 :98.3% 2021-12-28 18:23:39,418 PFDreid.test INFO: CMC curve, Rank-10 :99.0% 达不到论文的95.5 甚至不如TransReID的精度 ??? 您能看看是为什么嘛?

    MODEL: PRETRAIN_CHOICE: 'imagenet' PRETRAIN_PATH: '/home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/weights/jx_vit_base_p16_224-80ecf9dd.pth' METRIC_LOSS_TYPE: 'triplet' IF_LABELSMOOTH: 'on' IF_WITH_CENTER: 'no' NAME: 'skeleton_transformer' NO_MARGIN: True DEVICE_ID: ('2') TRANSFORMER_TYPE: 'vit_base_patch16_224_TransReID' STRIDE_SIZE: [16, 16]

    SIE_CAMERA: True SIE_COE: 3.0 JPM: True RE_ARRANGE: True NUM_HEAD: 8 DECODER_DROP_RATE: 0.1 DROP_FIRST: False NUM_DECODER_LAYER: 6 QUERY_NUM: 17 POSE_WEIGHT: '/home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/weights/pose_hrnet_w48_384x288.pth' SKT_THRES: 0.2

    INPUT: SIZE_TRAIN: [256, 128] SIZE_TEST: [256, 128] PROB: 0.5 # random horizontal flip RE_PROB: 0.5 # random erasing PADDING: 10 PIXEL_MEAN: [0.5, 0.5, 0.5] PIXEL_STD: [0.5, 0.5, 0.5]

    DATASETS: NAMES: ('market1501') ROOT_DIR: ('/home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/data/')

    DATALOADER: SAMPLER: 'softmax_triplet' NUM_INSTANCE: 4 NUM_WORKERS: 8

    SOLVER: OPTIMIZER_NAME: 'SGD' MAX_EPOCHS: 300 BASE_LR: 0.008 IMS_PER_BATCH: 64 WARMUP_METHOD: 'linear' LARGE_FC_LR: False CHECKPOINT_PERIOD: 60 LOG_PERIOD: 50 EVAL_PERIOD: 30 WEIGHT_DECAY: 1e-4 WEIGHT_DECAY_BIAS: 1e-4 BIAS_LR_FACTOR: 2

    TEST: EVAL: True IMS_PER_BATCH: 256 RE_RANKING: False WEIGHT: "/home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/logs/Market/pfd_net/skeleton_transformer_300.pth" #put your own pth NECK_FEAT: 'before' FEAT_NORM: 'yes'

    OUTPUT_DIR: 'logs/Market/pfd_net'

    opened by zqx951102 3
  • 使用您的Occluded-Duke的预训练模型达不到文中的结果

    使用您的Occluded-Duke的预训练模型达不到文中的结果

    作者您好: 感谢你做出如此优秀的工作,我按照reademe的要求在使用您的Occluded-Duke的预训练模型时,发现达不到文中所说的结果,下图是我测试的结果: image 跟论文中的结果大约相差2%,我使用的时pytorch1.7.1, cuda10.2, python3.7.13;所以我想知道这是什么原因造成的呢? 期待您的回复。

    opened by changshuowang 2
  • There is no Occlude-REID data loader

    There is no Occlude-REID data loader

    Good work! I respect your contributions!

    I want to testing Occluded-REID dataset in your code, but there is no loader. In your code, dataset.make_dataloader.py, line 14 "from .occ_reid import Occluded_REID"

    Would you share this code?

    thank you

    opened by intlabSeJun 4
Releases(V1.0.0)
Owner
Tao Wang
Tao Wang
PyTorch implementation of spectral graph ConvNets, NIPS’16

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
A code implementation of AC-GC: Activation Compression with Guaranteed Convergence, in NeurIPS 2021.

Code For AC-GC: Lossy Activation Compression with Guaranteed Convergence This code is intended to be used as a supplemental material for submission to

Dave Evans 2 Nov 01, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages

OCR-Streamlit-App OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages OCR app gets an image a

Siva Prakash 5 Apr 05, 2022
PyTorch reimplementation of minimal-hand (CVPR2020)

Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil

Hao Meng 228 Dec 29, 2022
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
Code and dataset for AAAI 2021 paper FixMyPose: Pose Correctional Describing and Retrieval Hyounghun Kim, Abhay Zala, Graham Burri, Mohit Bansal.

FixMyPose / फिक्समाइपोज़ Code and dataset for AAAI 2021 paper "FixMyPose: Pose Correctional Describing and Retrieval" Hyounghun Kim*, Abhay Zala*, Grah

4 Sep 19, 2022
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

ZJU3DV 98 Dec 07, 2022
Byzantine-robust decentralized learning via self-centered clipping

Byzantine-robust decentralized learning via self-centered clipping In this paper, we study the challenging task of Byzantine-robust decentralized trai

EPFL Machine Learning and Optimization Laboratory 4 Aug 27, 2022
Graph Neural Networks with Keras and Tensorflow 2.

Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to

Daniele Grattarola 2.2k Jan 08, 2023
Raptor-Multi-Tool - Raptor Multi Tool With Python

Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will

Aran 44 Jan 04, 2023
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Pavel Izmailov 25 Sep 21, 2022
InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing

InsTrim The paper: InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing Build Prerequisite llvm-8.0-dev clang-8.0 cmake = 3.2 Make git cl

75 Dec 23, 2022
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Andrew Jesson 9 Apr 04, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023