Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

Overview

SuperGAT

Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighborhood: Graph Attention Design with Self-Supervision, International Conference on Learning Representations (ICLR), 2021.

Notice

The documented SuperGATConv layer with an example has been merged to the PyTorch Geometric's main branch.

This repository is based on torch==1.4.0+cu100 and torch-geometric==1.4.3, which are somewhat outdated at this point (Feb 2021). If you are using recent PyTorch/CUDA/PyG, we would recommend using the PyG's. If you want to run codes in this repository, please follow #installation.

Installation

# In SuperGAT/
bash install.sh ${CUDA, default is cu100}
  • If you have any trouble installing PyTorch Geometric, please install PyG's dependencies manually.
  • Codes are tested with python 3.7.6 and nvidia/cuda:10.0-cudnn7-devel-ubuntu16.04 image.
  • PYG's FAQ might be helpful.

Basics

  • The main train/test code is in SuperGAT/main.py.
  • If you want to see the SuperGAT layer in PyTorch Geometric MessagePassing grammar, refer to SuperGAT/layer.py.
  • If you want to see hyperparameter settings, refer to SuperGAT/args.yaml and SuperGAT/arguments.py.

Run

python3 SuperGAT/main.py \
    --dataset-class Planetoid \
    --dataset-name Cora \
    --custom-key EV13NSO8-ES
 
...

## RESULTS SUMMARY ##
best_test_perf: 0.853 +- 0.003
best_test_perf_at_best_val: 0.851 +- 0.004
best_val_perf: 0.825 +- 0.003
test_perf_at_best_val: 0.849 +- 0.004
## RESULTS DETAILS ##
best_test_perf: [0.851, 0.853, 0.857, 0.852, 0.858, 0.852, 0.847]
best_test_perf_at_best_val: [0.851, 0.849, 0.855, 0.852, 0.858, 0.848, 0.844]
best_val_perf: [0.82, 0.824, 0.83, 0.826, 0.828, 0.824, 0.822]
test_perf_at_best_val: [0.851, 0.844, 0.853, 0.849, 0.857, 0.848, 0.844]
Time for runs (s): 173.85422565042973

The default setting is 7 runs with different random seeds. If you want to change this number, change num_total_runs in the main block of SuperGAT/main.py.

For ogbn-arxiv, use SuperGAT/main_ogb.py.

GPU Setting

There are three arguments for GPU settings (--num-gpus-total, --num-gpus-to-use, --gpu-deny-list). Default values are from the author's machine, so we recommend you modify these values from SuperGAT/args.yaml or by the command line.

  • --num-gpus-total (default 4): The total number of GPUs in your machine.
  • --num-gpus-to-use (default 1): The number of GPUs you want to use.
  • --gpu-deny-list (default: [1, 2, 3]): The ids of GPUs you want to not use.

If you have four GPUs and want to use the first (cuda:0),

python3 SuperGAT/main.py \
    --dataset-class Planetoid \
    --dataset-name Cora \
    --custom-key EV13NSO8-ES \
    --num-gpus-total 4 \
    --gpu-deny-list 1 2 3

Model (--model-name)

Type Model name
GCN GCN
GraphSAGE SAGE
GAT GAT
SuperGATGO GAT
SuperGATDP GAT
SuperGATSD GAT
SuperGATMX GAT

Dataset (--dataset-class, --dataset-name)

Dataset class Dataset name
Planetoid Cora
Planetoid CiteSeer
Planetoid PubMed
PPI PPI
WikiCS WikiCS
WebKB4Univ WebKB4Univ
MyAmazon Photo
MyAmazon Computers
PygNodePropPredDataset ogbn-arxiv
MyCoauthor CS
MyCoauthor Physics
MyCitationFull Cora_ML
MyCitationFull CoraFull
MyCitationFull DBLP
Crocodile Crocodile
Chameleon Chameleon
Flickr Flickr

Custom Key (--custom-key)

Type Custom key (General) Custom key (for PubMed) Custom key (for ogbn-arxiv)
SuperGATGO EV1O8-ES EV1-500-ES -
SuperGATDP EV2O8-ES EV2-500-ES -
SuperGATSD EV3O8-ES EV3-500-ES EV3-ES
SuperGATMX EV13NSO8-ES EV13NSO8-500-ES EV13NS-ES

Other Hyperparameters

See SuperGAT/args.yaml or run $ python3 SuperGAT/main.py --help.

Code Base

Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
Personal project about genus-0 meshes, spherical harmonics and a cow

How to transform a cow into spherical harmonics ? Spot the cow, from Keenan Crane's blog Context In the field of Deep Learning, training on images or

3 Aug 22, 2022
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
Memory Efficient Attention (O(sqrt(n)) for Jax and PyTorch

Memory Efficient Attention This is unofficial implementation of Self-attention Does Not Need O(n^2) Memory for Jax and PyTorch. Implementation is almo

Amin Rezaei 126 Dec 27, 2022
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

this is a simple artificial neural network model using deep learning and torch-audio to classify cats and dog sounds.

crispengari 3 Dec 05, 2022
Deep Learning Specialization by Andrew Ng, deeplearning.ai.

Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l

Engen 1.5k Jan 07, 2023
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
Source code of SIGIR2021 Paper 'One Chatbot Per Person: Creating Personalized Chatbots based on Implicit Profiles'

DHAP Source code of SIGIR2021 Long Paper: One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles . Preinstallation Fir

ZYMa 32 Dec 06, 2022
Human Dynamics from Monocular Video with Dynamic Camera Movements

Human Dynamics from Monocular Video with Dynamic Camera Movements Ri Yu, Hwangpil Park and Jehee Lee Seoul National University ACM Transactions on Gra

215 Jan 01, 2023
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022) By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou,

Shilong Zhang 129 Dec 24, 2022
Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)

Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all view

4 Nov 19, 2022
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023