A computer vision pipeline to identify the "icons" in Christian paintings

Overview

Christian-Iconography

Open In Colab Screenshot from 2022-01-08 18-26-30

A computer vision pipeline to identify the "icons" in Christian paintings.

A bit about iconography.

Iconography is related to identifying the subject itself in the image. So, for instance when I say Christian Iconography I would mean that I am trying to identify some objects like crucifix or mainly in this project the saints!

Inspiration

I was looking for some interesting problem to solve and I came across RedHenLab's barnyard of projects and it had some really wonderful ideas there and this particular one intrigued me. On the site they didn't have much progress on it as the datasets were not developed on this subject but after surfing around I found something and just like that I got started!

Dataset used.

The project uses the ArtDL dataset which contains 42,479 images of artworks portraying Christian saints, divided in 10 classes: Saint Dominic (iconclass 11HH(DOMINIC)), Saint Francis of Assisi (iconclass 11H(FRANCIS)), Saint Jerome (iconclass 11H(JEROME)), Saint John the Baptist (iconclass 11H(JOHN THE BAPTIST)), Saint Anthony of Padua (iconclass 11H(ANTONY OF PADUA), Saint Mary Magdalene (iconclass 11HH(MARY MAGDALENE)), Saint Paul (iconclass 11H(PAUL)), Saint Peter (iconclass 11H(PETER)), Saint Sebastian (iconclass 11H(SEBASTIAN)) and Virgin Mary (iconclass 11F). All images are associated with high-level annotations specifying which iconography classes appear in them (from a minimum of 1 class to a maximum of 7 classes).

Sources

Screenshot from 2022-01-08 18-08-56

Preprocessing steps.

All the images were first padded so that the resolution is sort of intact when the image is resized. A dash of normalization and some horizontal flips and the dataset is ready to be eaten/trained on by our model xD.

Architecture used.

As mentioned the ArtDL dataset has around 43k images and hence training it completely wouldn't make sense. Hence a ResNet50 pretrained model was used.

But there is a twist.

Instead of just having the final classifying layer trained we only freeze the initial layer as it has gotten better at recognizing patterns from a lot of images it might have trained on. And then we fine-tune the deeper layers so that it learns the art after the initial abstraction. Another deviation is to replace the final linear layer by 1x1 conv layer to make the classification.

Quantiative Results.

Training

I trained the network for 10 epochs which took around 3 hours and used Stochastic Gradient Descent with LR=0.01 and momentum 0.9. The accuracy I got was 64% on the test set which can be further improved.

Classification Report

Screenshot from 2022-01-10 22-07-52

From the classification report it is clear that Saint MARY has the most number of samples in the training set and the precision for that is high. On the other hand other samples are low in number and hence their scores are low and hence we can't infer much except the fact that we need to oversample some of these classes so that we can gain more meaningful resuls w.r.t accuracy and of course these metrics as well

Qualitative Results

We try an image of Saint Dominic and see what our classifier is really learning.

Screenshot from 2022-01-10 22-10-37

Saliency Map

Screenshot from 2022-01-10 22-12-31

We can notice that regions around are more lighter than elsewhere which could mean that our classifier at least knows where to look :p

Guided-Backpropagation

Screenshot from 2022-01-10 22-14-26

So what really guided backprop does is that it points out the positve influences while classifiying an image. From this result we can see that it is really ignoring the padding applied and focussing more on the body and interesting enough the surroundings as well

Grad-CAM!

Screenshot from 2022-01-10 22-15-27

As expected the Grad-CAM when used shows the hot regions in our images and it is around the face and interesting enough the surrounding so maybe it could be that surroundings do have a role-play in type of saint?

Possible improvements.

  • Finding more datasets
  • Or working on the architecture maybe?
  • Using GANs to generate samples and make classifier stronger

Citations

@misc{milani2020data,
title={A Data Set and a Convolutional Model for Iconography Classification in Paintings},
author={Federico Milani and Piero Fraternali},
eprint={2010.11697},
archivePrefix={arXiv},
primaryClass={cs.CV},
year={2020}
}

RedhenLab's barnyard of projects

Owner
Rishab Mudliar
AKA Start At The Beginning.
Rishab Mudliar
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

Korbinian Pöppel 47 Nov 28, 2022
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
Reusable constraint types to use with typing.Annotated

annotated-types PEP-593 added typing.Annotated as a way of adding context-specific metadata to existing types, and specifies that Annotated[T, x] shou

125 Dec 26, 2022
Continuous Diffusion Graph Neural Network

We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE.

Twitter Research 227 Jan 05, 2023
Luminaire is a python package that provides ML driven solutions for monitoring time series data.

A hands-off Anomaly Detection Library Table of contents What is Luminaire Quick Start Time Series Outlier Detection Workflow Anomaly Detection for Hig

Zillow 670 Jan 02, 2023
Setup freqtrade/freqUI on Heroku

UNMAINTAINED - REPO MOVED TO https://github.com/p-zombie/freqtrade Creating the app git clone https://github.com/joaorafaelm/freqtrade.git && cd freqt

João 51 Aug 29, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild"

VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video

45 Nov 29, 2022
PyTorch - Python + Nim

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021
Like a cowsay but without cows!

Foxsay This is a simple program that generates pictures of a cute fox with a message. It is like a cowsay but without cows! Fox girls are better! Usag

Anastasia Kim 28 Feb 20, 2022
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning

Continual learning datasets Introduction This repository contains PyTorch image

berjaoui 5 Aug 28, 2022
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Nader Akoury 27 Dec 20, 2022
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
DeepLab2: A TensorFlow Library for Deep Labeling

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.

Google Research 845 Jan 04, 2023
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022