Pytorch implemenation of Stochastic Multi-Label Image-to-image Translation (SMIT)

Overview

Build Status

SMIT: Stochastic Multi-Label Image-to-image Translation

This repository provides a PyTorch implementation of SMIT. SMIT can stochastically translate an input image to multiple domains using only a single generator and a discriminator. It only needs a target domain (binary vector e.g., [0,1,0,1,1] for 5 different domains) and a random gaussian noise.

Paper

SMIT: Stochastic Multi-Label Image-to-image Translation
Andrés Romero 1, Pablo Arbelaez1, Luc Van Gool 2, Radu Timofte 2
1 Biomedical Computer Vision (BCV) Lab, Universidad de Los Andes.
2 Computer Vision Lab (CVL), ETH Zürich.

Citation

@article{romero2019smit,
  title={SMIT: Stochastic Multi-Label Image-to-Image Translation},
  author={Romero, Andr{\'e}s and Arbel{\'a}ez, Pablo and Van Gool, Luc and Timofte, Radu},
  journal={ICCV Workshops},
  year={2019}
}

Dependencies


Usage

Cloning the repository

$ git clone https://github.com/BCV-Uniandes/SMIT.git
$ cd SMIT

Downloading the dataset

To download the CelebA dataset:

$ bash generate_data/download.sh

Train command:

./main.py --GPU=$gpu_id --dataset_fake=CelebA

Each dataset must has datasets/ .py and datasets/ .yaml files. All models and figures will be stored at snapshot/models/$dataset_fake/ _ .pth and snapshot/samples/$dataset_fake/ _ .jpg , respectivelly.

Test command:

./main.py --GPU=$gpu_id --dataset_fake=CelebA --mode=test

SMIT will expect the .pth weights are stored at snapshot/models/$dataset_fake/ (or --pretrained_model=location/model.pth should be provided). If there are several models, it will take the last alphabetical one.

Demo:

./main.py --GPU=$gpu_id --dataset_fake=CelebA --mode=test --DEMO_PATH=location/image_jpg/or/location/dir

DEMO performs transformation per attribute, that is swapping attributes with respect to the original input as in the images below. Therefore, --DEMO_LABEL is provided for the real attribute if DEMO_PATH is an image (If it is not provided, the discriminator acts as classifier for the real attributes).

Pretrained models

Models trained using Pytorch 1.0.

Multi-GPU

For multiple GPUs we use Horovod. Example for training with 4 GPUs:

mpirun -n 4 ./main.py --dataset_fake=CelebA

Qualitative Results. Multi-Domain Continuous Interpolation.

First column (original input) -> Last column (Opposite attributes: smile, age, genre, sunglasses, bangs, color hair). Up: Continuous interpolation for the fake image. Down: Continuous interpolation for the attention mechanism.

Qualitative Results. Random sampling.

CelebA

EmotionNet

RafD

Edges2Shoes

Edges2Handbags

Yosemite

Painters


Qualitative Results. Style Interpolation between first and last row.

CelebA

EmotionNet

RafD

Edges2Shoes

Edges2Handbags

Yosemite

Painters


Qualitative Results. Label continuous inference between first and last row.

CelebA

EmotionNet

Owner
Biomedical Computer Vision Group @ Uniandes
We specialize in designing novel deep learning methodologies for computer vision, natural language understanding, and biomedicine.
Biomedical Computer Vision Group @ Uniandes
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Tutoriais Públicos Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado finan

Trading com Dados 68 Oct 15, 2022
2021 credit card consuming recommendation

2021 credit card consuming recommendation

Wang, Chung-Che 7 Mar 08, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
Breast Cancer Detection 🔬 ITI "AI_Pro" Graduation Project

BreastCancerDetection - This program is designed to predict two severity of abnormalities associated with breast cancer cells: benign and malignant. Mammograms from MIAS is preprocessed and features

6 Nov 29, 2022
Official Implementation of PCT

Official Implementation of PCT Prerequisites python == 3.8.5 Please make sure you have the following libraries installed: numpy torch=1.4.0 torchvisi

32 Nov 21, 2022
Unofficial PyTorch implementation of "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving" (ECCV 2020)

RTM3D-PyTorch The PyTorch Implementation of the paper: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving (ECCV 2020

Nguyen Mau Dzung 271 Nov 29, 2022
This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.

PlyTitle_Generation This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by

SeungHeonDoh 6 Jan 03, 2022
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19) Official pytorch implementation of the paper: "SinGAN: Learning a Generative M

Tamar Rott Shaham 3.2k Dec 25, 2022
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
unet for image segmentation

Implementation of deep learning framework -- Unet, using Keras The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Seg

zhixuhao 4.1k Dec 31, 2022
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction

SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python

Multimedia Computing Group, Nanjing University 99 Dec 30, 2022
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
Pytorch implementation of the paper Time-series Generative Adversarial Networks

TimeGAN-pytorch Pytorch implementation of the paper Time-series Generative Adversarial Networks presented at NeurIPS'19. Jinsung Yoon, Daniel Jarrett

Zhiwei ZHANG 21 Nov 24, 2022