Labels4Free: Unsupervised Segmentation using StyleGAN

Overview

Labels4Free: Unsupervised Segmentation using StyleGAN

ICCV 2021

image Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthetic images

We propose an unsupervised segmentation framework for StyleGAN generated objects. We build on two main observations. First, the features generated by StyleGAN hold valuable information that can be utilized towards training segmentation networks. Second, the foreground and background can often be treated to be largely independent and be swapped across images to produce plausible composited images. For our solution, we propose to augment the Style-GAN2 generator architecture with a segmentation branch and to split the generator into a foreground and background network. This enables us to generate soft segmentation masks for the foreground object in an unsupervised fashion. On multiple object classes, we report comparable results against state-of-the-art supervised segmentation networks, while against the best unsupervised segmentation approach we demonstrate a clear improvement, both in qualitative and quantitative metrics.

Labels4Free: Unsupervised Segmentation Using StyleGAN (ICCV 2021)
Rameen Abdal, Peihao Zhu, Niloy Mitra, Peter Wonka
KAUST, Adobe Research

[Paper] [Project Page] [Video]

Installation

Clone this repo.

git clone https://github.com/RameenAbdal/Labels4Free.git
cd Labels4Free/

This repo is based on the Pytorch implementation of StyleGAN2 (rosinality/stylegan2-pytorch). Refer to this repo for setting up the environment, preparation of LMDB datasets and downloading pretrained weights of the models.

Download the pretrained weights of Alpha Networks here

Training the models

The models were trained on 4 RTX 2080 (24 GB) GPUs. In order to train the models using the settings in the paper use the following commands for each dataset.

Checkpoints and samples are saved in ./checkpoint and ./sample folders.

FFHQ dataset

python -m torch.distributed.launch --nproc_per_node=4 train.py --size 1024 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [FFHQ_CONFIG-F_CHECKPOINT]--loss_multiplier 1.2 --iter 1200 --trunc 1.0 --lr 0.0002 --reproduce_model

LSUN-Horse dataset

python -m torch.distributed.launch --nproc_per_node=4 train.py --size 256 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [LSUN_HORSE_CONFIG-F_CHECKPOINT] --loss_multiplier 3 --iter 500 --trunc 1.0 --lr 0.0002 --reproduce_model

LSUN-Cat dataset

python -m torch.distributed.launch --nproc_per_node=4 train.py --size 256 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [LSUN_CAT_CONFIG-F_CHECKPOINT]  --loss_multiplier 3 --iter 900 --trunc 0.5 --lr 0.0002 --reproduce_model

LSUN-Car dataset

python train.py --size 512 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [LSUN_CAR_CONFIG-F_CHECKPOINT] --loss_multiplier 10 --iter 50 --trunc 0.3 --lr 0.002 --sat_weight 1.0 --model_save_freq 25 --reproduce_model --use_disc

In order to train your own models using different settings e.g on a single GPU, using different samples, iterations etc. use the following commands.

FFHQ dataset

python train.py --size 1024 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [FFHQ_CONFIG-F_CHECKPOINT] --loss_multiplier 1.2 --iter 2000 --trunc 1.0 --lr 0.0002 --bg_coverage_wt 3 --bg_coverage_value 0.4

LSUN-Horse dataset

python train.py --size 256 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [LSUN_HORSE_CONFIG-F_CHECKPOINT] --loss_multiplier 3 --iter 2000 --trunc 1.0 --lr 0.0002 --bg_coverage_wt 6 --bg_coverage_value 0.6

LSUN-Cat dataset

python train.py --size 256 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [LSUN_CAT_CONFIG-F_CHECKPOINT] --loss_multiplier 3 --iter 2000 --trunc 0.5 --lr 0.0002 --bg_coverage_wt 4 --bg_coverage_value 0.35

LSUN-Car dataset

python train.py --size 512 [LMDB_DATASET_PATH] --batch 2 --n_sample 8 --ckpt [LSUN_CAR_CONFIG-F_CHECKPOINT] --loss_multiplier 20 --iter 750 --trunc 0.3 --lr 0.0008 --sat_weight 0.1 --bg_coverage_wt 40 --bg_coverage_value 0.75 --model_save_freq 50

Sample from the pretrained model

Samples are saved in ./test_sample folder.

python test_sample.py --size [SIZE] --batch 2 --n_sample 100 --ckpt_bg_extractor [ALPHANETWORK_MODEL] --ckpt_generator [GENERATOR_MODEL] --th 0.9

Results on Custom dataset

Folder: Custom dataset, predicted and ground truth masks.

python test_customdata.py --path_gt [GT_Folder] --path_pred [PRED_FOLDER]

Citation

@InProceedings{Abdal_2021_ICCV,
    author    = {Abdal, Rameen and Zhu, Peihao and Mitra, Niloy J. and Wonka, Peter},
    title     = {Labels4Free: Unsupervised Segmentation Using StyleGAN},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {13970-13979}
}

Acknowledgments

This implementation builds upon the Pytorch implementation of StyleGAN2 (rosinality/stylegan2-pytorch). This work was supported by Adobe Research and KAUST Office of Sponsored Research (OSR).

Owner
PhD @ KAUST
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022
i3DMM: Deep Implicit 3D Morphable Model of Human Heads

i3DMM: Deep Implicit 3D Morphable Model of Human Heads CVPR 2021 (Oral) Arxiv | Poject Page This project is the official implementation our work, i3DM

Tarun Yenamandra 60 Jan 03, 2023
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022
Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer)

Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer) Introduction By applying the

Son Gyo Jung 1 Jul 09, 2022
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022
The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

30 Nov 12, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021
An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.

Federated Averaging (FedAvg) in PyTorch An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-E

Seok-Ju Hahn 123 Jan 06, 2023
High-fidelity 3D Model Compression based on Key Spheres

High-fidelity 3D Model Compression based on Key Spheres This repository contains the implementation of the paper: Yuanzhan Li, Yuqi Liu, Yujie Lu, Siy

5 Oct 11, 2022
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
PyTorch code of my WACV 2022 paper Improving Model Generalization by Agreement of Learned Representations from Data Augmentation

Improving Model Generalization by Agreement of Learned Representations from Data Augmentation (WACV 2022) Paper ArXiv Why it matters? When data augmen

Rowel Atienza 5 Mar 04, 2022
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
diablo2 resurrected loot filter

Only For Chinese and Traditional Chinese The filter only for Chinese and Traditional Chinese, i didn't change it for other language.Maybe you could mo

elmagnifico 249 Dec 04, 2022
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022