Ascend your Jupyter Notebook usage

Overview

Jupyter Ascending

Sync Jupyter Notebooks from any editor

Jupyter Ascending

About

Jupyter Ascending lets you edit Jupyter notebooks from your favorite editor, then instantly sync and execute that code in the Jupyter notebook running in your browser.

It's the best of both worlds--the autocomplete, keybindings, and refactoring tools you love in your favorite editor, plus the great visualization abilities of a Jupyter notebook.

Combined with basic syncing of your code to a remote server, you can have all the power of a beefy dev-server with all the convenience of editing code locally.

Installation

$ pip install jupyter_ascending && \
jupyter nbextension    install jupyter_ascending --sys-prefix --py && \
jupyter nbextension     enable jupyter_ascending --sys-prefix --py && \
jupyter serverextension enable jupyter_ascending --sys-prefix --py

You can confirm it's installed by checking for jupyter_ascending in:

$ jupyter nbextension     list
$ jupyter serverextension list

Usage

Quickstart

  1. python -m jupyter_ascending.scripts.make_pair --base example

    This makes a pair of synced py and ipynb files, example.sync.py and example.sync.ipynb.

  2. Start jupyter and open the notebook:

    jupyter notebook example.sync.ipynb

  3. Add some code to the .sync.py file, e.g.

    echo 'print("Hello World!")' >> example.sync.py

  4. Sync the code into the jupyter notebook:

    python -m jupyter_ascending.requests.sync --filename example.sync.py

  5. Run that cell of code

    python -m jupyter_ascending.requests.execute --filename example.sync.py --line 16

Set up one of the editor integrations to do all of this from within your favorite editor!

Working with multiple jupyter servers or alternate ports

Currently Jupyter Ascending expects the jupyter server to be running at localhost:8888. If it's running elsewhere (eg due to having multiple jupyter notebooks open), you'll need to set the env variables JUPYTER_ASCENDING_EXECUTE_HOST and JUPYTER_ASCENDING_EXECUTE_PORT appropriately both where you use the client (ie in your editor) and where you start the server.

By default the Jupyter server will search for a free port starting at 8888. If 8888 is unavailable and it selects eg 8889, Jupyter Ascending won't work - as it's expecting to connect to 8888. To force Jupyter to use a specific port, start your jupyter notebook with JUPYTER_PORT=8888 JUPYTER_PORT_RETRIES=0 jupyter notebook (or whatever port you want, setting also JUPYTER_ASCENDING_EXECUTE_PORT appropriately).

Working on a remote server

Jupyter Ascending doesn't know or care if the editor and the jupyter server are on the same machine. The client is just sending requests to http://[jupyter_server_url]:[jupyter_server_port]/jupyter_ascending, with the default set to http://localhost:8888/jupyter_ascending. We typically use SSH to forward the local jupyter port into the remote server, but you can set up the networking however you like, and use the environment variables to tell the client where to look for the Jupyter server.

There's fuzzy-matching logic to match the locally edited file path with the remote notebook file path (eg if the two machines have the code in a different directory), so everything should just work!

Here's an example of how you could set this up:

  1. install jupyter-ascending on both the client and the server

  2. put a copy of your project code on both the client and the server

  3. start a jupyter notebook on the server, and open a .sync.ipynb notebook

  4. set up port forwarding, e.g. with something like this (forwards local port 8888 to the remote port 8888)

    ssh -L 8888:127.0.0.1:8888 [email protected]_hostname

  5. use Jupyter Ascending clients as normal on the corresponding .sync.py file

Security Warning

The jupyter-ascending client-server connection is currently completely unauthenticated, even if you have auth enabled on the Jupyter server. This means that, if your jupyter server port is open to the internet, someone could detect that you have jupyter-ascending running, then sync and run arbitrary code on your machine. That's bad!

For the moment, we recommend only running jupyter-ascending when you're using jupyter locally, or when your jupyter server isn't open to the public internet. For example, we run Jupyter on remote servers, but keep Jupyter accessible only to localhost. Then we use a secure SSH tunnel to do port-forwarding.

Hopefully we can add proper authentication in the future. Contributions are welcome here!

How it works

  • your editor calls the jupyter ascending client library with one of a few commands:
    • sync the code to the notebook (typically on save)
    • run a cell / run all cells / other commands that should be mapped to a keyboard shortcut
  • the client library assembles a HTTP POST request and sends it to the jupyter server
  • there is a jupyter server extension which accepts HTTP POST requests at http://[jupyter_server_url]:[jupyter_server_port]/jupyter_ascending.
  • the server extension matches the request filename to the proper running notebooks and forwards the command along to the notebook plugin
  • a notebook plugin receives the command, and updates the contents of the notebook or executes the requested command.
  • the notebook plugin consists of two parts - one part executes within the python process of the notebook kernel, and the other executes in javascript in the notebook's browser window. the part in python launches a little webserver in a thread, which is how it receives messages the server extension. when the webserver thread starts up, it sends a message to the server extension to "register" itself so the server extension knows where to send commands for that notebook.

Local development

To do local development (only needed if you're modifying the jupyter-ascending code):

# install dependencies
$ poetry install

# Activate the poetry env
$ poetry shell

# Installs the extension, using symlinks
$ jupyter nbextension install --py --sys-prefix --symlink jupyter_ascending

# Enables them, so it auto loads
$ jupyter nbextension enable jupyter_ascending --py --sys-prefix
$ jupyter serverextension enable jupyter_ascending --sys-prefix --py

To check that they are enabled, do something like this:

$ jupyter nbextension list
Known nbextensions:
  config dir: /home/tj/.pyenv/versions/3.8.1/envs/general/etc/jupyter/nbconfig
    notebook section
      jupytext/index  enabled
      - Validating: OK
      jupyter-js-widgets/extension  enabled
      - Validating: OK
      jupyter_ascending/extension  enabled
      - Validating: OK

$ jupyter serverextension list
config dir: /home/tj/.pyenv/versions/3.8.1/envs/general/etc/jupyter
    jupytext  enabled
    - Validating...
      jupytext 1.8.0 OK
    jupyter_ascending  enabled
    - Validating...
      jupyter_ascending 0.1.13 OK

Run tests from the root directory of this repository using python -m pytest ..

Format files with pyfixfmt. In a PyCharm file watcher, something like

python -m pyfixfmt --file-glob $FilePathRelativeToProjectRoot$ --verbose

Pushing a new version to PyPI:

  • Bump the version number in pyproject.toml and _version.py.
  • poetry build
  • poetry publish
  • git tag VERSION and git push origin VERSION

Updating dependencies:

  • Dependency constraints are in pyproject.toml. These are the constraints that will be enforced when distributing the package to end users.
  • These get locked down to specific versions of each package in poetry.lock, when you run poetry lock or poetry install for the first time. poetry.lock is only used by developers using poetry install - the goal is to have a consistent development environment for a all developers.
  • If you make a change to the dependencies in pyproject.toml, you'll want to update the lock file with poetry lock. To get only the minimal required changes, use poetry lock --no-update.
Owner
Untitled AI
We're investigating the fundamentals of learning across humans and machines in order to create more general machine intelligence.
Untitled AI
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.

Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021. Bobo Xi, Jiaojiao Li, Yunsong Li and Qian Du. Code f

Bobo Xi 7 Nov 03, 2022
LIAO Shuiying 6 Dec 01, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi

18 Oct 20, 2022
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
FlingBot: The Unreasonable Effectiveness of Dynamic Manipulations for Cloth Unfolding

This repository contains code for training and evaluating FlingBot in both simulation and real-world settings on a dual-UR5 robot arm setup for Ubuntu 18.04

Columbia Artificial Intelligence and Robotics Lab 70 Dec 06, 2022
Video Corpus Moment Retrieval with Contrastive Learning (SIGIR 2021)

Video Corpus Moment Retrieval with Contrastive Learning PyTorch implementation for the paper "Video Corpus Moment Retrieval with Contrastive Learning"

ZHANG HAO 42 Dec 29, 2022
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati

Aritra Roy Gosthipaty 59 Dec 10, 2022
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Randstad Artificial Intelligence Challenge (powered by VGEN) Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato Struttura director

Stefano Fiorucci 1 Nov 13, 2021
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

Stream-AD 61 Dec 02, 2022
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
This is the official pytorch implementation of Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation(TESKD)

Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation (TESKD) By Zheng Li[1,4], Xiang Li[2], Lingfeng Yang[2,4], Jian Yang[2], Zh

Zheng Li 9 Sep 26, 2022
CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation

CSKG: The CommonSense Knowledge Graph CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation: AT

USC ISI I2 85 Dec 12, 2022
Flexible Option Learning - NeurIPS 2021

Flexible Option Learning This repository contains code for the paper Flexible Option Learning presented as a Spotlight at NeurIPS 2021. The implementa

Martin Klissarov 7 Nov 09, 2022