Awesome Monocular 3D detection

Overview

Awesome Monocular 3D detection

Paper list of 3D detetction, keep updating!

Contents

Paper List

2022

  • [MonoDistill] MonoDistill: Learning Spatial Features for Monocular 3D Object Detection [ICLR2022][Pytorch]
  • [MonoCon] Learning Auxiliary Monocular Contexts Helps Monocular 3D Object Detection [AAAI2022][Pytorch]
  • [ImVoxelNet] ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection [WACV2022][Pytorch]

2021

  • [PCT] Progressive Coordinate Transforms for Monocular 3D Object Detection [NeurIPS2021][Pytorch]
  • [DFR-Net] The Devil Is in the Task: Exploiting Reciprocal Appearance-Localization Features for Monocular 3D Object Detection [ICCV2021]
  • [AutoShape] AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection [ICCV2021][Pytorch][Paddle]
  • [pseudo-analysis] Are we Missing Confidence in Pseudo-LiDAR Methods for Monocular 3D Object Detection? [ICCV2021]
  • [Gated3D] Gated3D: Monocular 3D Object Detection From Temporal Illumination Cues [ICCV2021]
  • [MonoRCNN] Geometry-based Distance Decomposition for Monocular 3D Object Detection [ICCV2021][Pytorch]
  • [DD3D] Is Pseudo-Lidar needed for Monocular 3D Object detection [ICCV2021][Pytorch]
  • [GUPNet] Geometry Uncertainty Projection Network for Monocular 3D Object Detection [ICCV2021][Pytorch]
  • [Neighbor-Vote] Neighbor-Vote: Improving Monocular 3D Object Detection through Neighbor Distance Voting [ACMMM2021]
  • [MonoEF] Monocular 3D Object Detection: An Extrinsic Parameter Free Approach [CVPR2021][Pytorch]
  • [monodle] Delving into Localization Errors for Monocular 3D Object Detection [CVPR2021][Pytorch]
  • [Monoflex] Objects are Different: Flexible Monocular 3D Object Detection [CVPR2021][Pytorch]
  • [GrooMeD-NMS] GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection [CVPR2021][Pytorch]
  • [DDMP-3D] Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection [CVPR2021][Pytorch]
  • [MonoRUn] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation [CVPR2021][Pytorch]
  • [M3DSSD] M3DSSD: Monocular 3D Single Stage Object Detector [CVPR2021][Pytorch]
  • [CaDDN] Categorical Depth Distribution Network for Monocular 3D Object Detection [CVPR2021][Pytorch]
  • [visualDet3D] Ground-aware Monocular 3D Object Detection for Autonomous Driving [RA-L][Pytorch]

2020

  • [UR3D] Distance-Normalized Unified Representation for Monocular 3D Object Detection [ECCV2020]
  • [MonoDR] Monocular Differentiable Rendering for Self-Supervised 3D Object Detection [ECCV2020]
  • [DA-3Ddet] Monocular 3d object detection via feature domain adaptation [ECCV2020]
  • [MoVi-3D] Towards generalization across depth for monocular 3d object detection [ECCV2020]
  • [PatchNet] Rethinking Pseudo-LiDAR Representation [ECCV2020][Pytorch]
  • [RAR-Net] Reinforced Axial Refinement Network for Monocular 3D Object Detection [ECCV2020]
  • [kinematic3d] Kinematic 3D Object Detection in Monocular Video [ECCV2020][Pytorch]
  • [RTM3D] RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving [ECCV2020][Pytorch]
  • [SMOKE] SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation [CVPRW2020][Pytorch]
  • [D4LCN] Learning Depth-Guided Convolutions for Monocular 3D Object Detection [CVPRW2020][Pytorch]
  • [MonoPair] MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships [CVPR2020]
  • [pseudo-LiDAR_e2e] End-to-End Pseudo-LiDAR for Image-Based 3D Object Detection [CVPR2020][Pytorch]
  • [Pseudo-LiDAR++] Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving [ICLR2020][Pytorch]
  • [OACV] Object-Aware Centroid Voting for Monocular 3D Object Detection [IROS2020]
  • [MonoGRNet_v2] Monocular 3D Object Detection via Geometric Reasoning on Keypoints [VISIGRAPP2020]
  • [ForeSeE] Task-Aware Monocular Depth Estimation for 3D Object Detection [AAAI2020(oral)][Pytorch]
  • [Decoupled-3D] Monocular 3D Object Detection with Decoupled Structured Polygon Estimation and Height-Guided Depth Estimation [AAAI2020]

2019

  • [3d-vehicle-tracking] Joint Monocular 3D Vehicle Detection and Tracking [ICCV2019][Pytorch]
  • [MonoDIS] Disentangling monocular 3d object detection [ICCV2019]
  • [AM3D] Accurate Monocular Object Detection via Color-Embedded 3D Reconstruction for Autonomous Driving [ICCV2019]
  • [M3D-RPN] M3D-RPN: Monocular 3D Region Proposal Network for Object Detection [ICCV2019(Oral)][Pytorch]
  • [MVRA] Multi-View Reprojection Architecture for Orientation Estimation [ICCVW2019]
  • [Mono3DPLiDAR] Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud [ICCVW2019]
  • [MonoPSR] Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction [CVPR2019][Pytorch]
  • [FQNet] Deep fitting degree scoring network for monocular 3d object detection [CVPR2019]
  • [ROI-10D] ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape [CVPR2019]
  • [GS3D] GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving [CVPR2019]
  • [Pseudo-LiDAR] Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving [CVPR2019][Pytorch]
  • [BirdGAN] Learning 2D to 3D Lifting for Object Detection in 3D for Autonomous Vehicles [IROS2019]
  • [MonoGRNet] MonoGRNet: A Geometric Reasoning Network for Monocular 3D Object Localization [AAAI2019(oral)][Tensorflow]
  • [OFT-Net] Orthographic feature transform for monocular 3d object detection [BMVC2019][Pytorch]
  • [Shift R-CNN] Shift R-CNN: Deep Monocular 3D Object Detection with Closed-Form Geometric Constraints [TIP2019]
  • [SS3D] SS3D: Monocular 3d object detection and box fitting trained end-to-end using intersection-over-union loss [Arxiv2019]

2018

  • [Multi-Fusion] Multi-Level Fusion based 3D Object Detection from Monocular Images [CVPR2018][Pytorch]
  • [Mono3D++] Mono3D++: Monocular 3D Vehicle Detection with Two-Scale 3D Hypotheses and Task Priors [AAAI2018]

2017

  • [Deep3DBox] 3D Bounding Box Estimation Using Deep Learning and Geometry [CVPR2017][Pytorch][Tensorflow]
  • [Deep MANTA] Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image [CVPR2017]

2016

  • [Mono3D] Monocular 3D object detection for autonomous driving [CVPR2016]

KITTI Results

Method Extra Test, AP3D|R40 Val, AP3D|R40 Val, AP3D|R11 Reference
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
MonoRUn Lidar 19.65 12.30 10.58 20.02 14.65 12.61 - - - CVPR2021
CaDDN Lidar 19.17 13.41 11.46 23.57 16.31 13.84 - - - CVPR2021
AM3D Depth 16.50 10.74 9.52 28.31 15.76 12.24 32.23 21.09 17.26 ICCV2019
PatchNet Depth 15.68 11.12 10.17 31.60 16.80 13.80 35.10 22.00 19.60 ECCV2020
D4LCN Depth 16.65 11.72 9.51 22.32 16.20 12.30 26.97 21.72 18.22 CVPRW2020
DFR-Net Depth 19.40 13.63 10.35 24.81 17.78 14.41 28.80 22.88 19.47 ICCV2021
M3D-RPN None 14.76 9.71 7.42 14.53 11.07 8.65 20.27 17.06 15.21 ICCV2019
SMOKE None 14.03 9.76 7.84 - - - 14.76 12.85 11.50 CVPRW2020
MonoPair None 13.04 9.99 8.65 16.28 12.30 10.42 - - - CVPR2020
RTM3D None 14.41 10.34 8.77 - - - 20.77 16.86 16.63 ECCV2020
M3DSSD None 17.51 11.46 8.98 - - - 27.77 21.67 18.28 CVPR2021
Monoflex None 19.94 13.89 12.07 23.64 17.51 14.83 28.17 21.92 19.07 CVPR2021
GUPNet None 20.11 14.20 11.77 22.76 16.46 13.72 - - - ICCV2021
MonoCon None 22.50 16.46 13.95 26.33 19.01 15.98 - - - AAAI2022
Owner
Zhikang Zou
Baidu Inc.
Zhikang Zou
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

291 Jan 02, 2023
Technical Analysis library in pandas for backtesting algotrading and quantitative analysis

bta-lib - A pandas based Technical Analysis Library bta-lib is pandas based technical analysis library and part of the backtrader family. Links Main P

DRo 393 Dec 20, 2022
Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

DenseNAS The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search. Neural architecture search (NAS)

Jamin Fong 291 Nov 18, 2022
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
Implementation of the ICCV'21 paper Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases

Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases [Papers 1, 2][Project page] [Video] The implementation of the papers Temporal

56 Nov 21, 2022
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
Music Generation using Neural Networks Streamlit App

Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i

Muhammad Sohaib Arshid 6 Aug 09, 2022
Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go This repository provides our implementation of the CVPR 2021 paper NeuroMorp

Meta Research 35 Dec 08, 2022
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

Yifan Wang 66 Nov 08, 2022
The official homepage of the (outdated) COCO-Stuff 10K dataset.

COCO-Stuff 10K dataset v1.1 (outdated) Holger Caesar, Jasper Uijlings, Vittorio Ferrari Overview Welcome to official homepage of the COCO-Stuff [1] da

Holger Caesar 263 Dec 11, 2022
Instant-nerf-pytorch - NeRF trained SUPER FAST in pytorch

instant-nerf-pytorch This is WORK IN PROGRESS, please feel free to contribute vi

94 Nov 22, 2022
Explaining Hyperparameter Optimization via PDPs

Explaining Hyperparameter Optimization via PDPs This repository gives access to an implementation of the methods presented in the paper submission “Ex

2 Nov 16, 2022
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022