Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

Related tags

Deep LearningNLOS-OT
Overview

NLOS-OT

Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

Description

In this repository, we release the NLOS-OT code in Pytorch as well as the passive NLOS imaging dataset NLOS-Passive.

  • Problem statement: Passive NLOS imaging

  • NLOS-OT architecture

  • The reconstruction results of NLOS-OT trained by specific dataset without partial occluder

  • The generalization results of NLOS-OT trained by dataset only from STL-10 with unknown partial occluder

Installation

  1. install required packages

  2. clone the repo

Prepare Data

  1. Download dataset

You can download each group in NLOS-Passive through the link below. Please note that a compressed package (.zip or .z01+.zip) represents a group of measured data.

link:https://pan.baidu.com/s/19Q48BWm1aJQhIt6BF9z-uQ

code:j3p2

If the link fails, please feel free to contact me.

  1. Organize the files structure of the dataset

Demo / Evaluate

Before that, you should have installed the required packages and organized the data set according to the appropriate file structure.

  1. Download pretrained pth

  2. run the test.py

Train

Before that, you should have installed the required packages and organized the data set according to the appropriate file structure.

Citation

If you find our work and code helpful, please consider cite:

We thank the following great works:

  • DeblurGAN, pix2pix: Our code is based on the framework provided by the two repos.

  • IntroVAE: The encoder and decoder in NLOS-OT are based on IntroVAE.

  • AE-OT, AEOT-GAN: The idea of using OT to complete passive NLOS imaging tasks in NLOS-OT comes from the two works.

If you find them helpful, please cite:

@inproceedings{kupynDeblurGANBlindMotion2018,
	title = {{DeblurGAN}: {Blind} {Motion} {Deblurring} {Using} {Conditional} {Adversarial} {Networks}},
	booktitle = {2018 {IEEE} {Conference} on {Computer} {Vision} and {Pattern} {Recognition} ({CVPR})},
	author = {Kupyn, Orest and Budzan, Volodymyr and Mykhailych, Mykola and Mishkin, Dmytro and Matas, Jiri},
	year = {2018},
}

@inproceedings{isolaImagetoimageTranslationConditional2017,
	title = {Image-to-image translation with conditional adversarial networks},
	booktitle = {2017 {IEEE} {Conference} on {Computer} {Vision} and {Pattern} {Recognition} ({CVPR})},
	publisher = {IEEE},
	author = {Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A.},
	year = {2017},
	pages = {5967--5976},
}

@inproceedings{huang_introvae_2018,
	title = {{IntroVAE}: {Introspective} {Variational} {Autoencoders} for {Photographic} {Image} {Synthesis}},
	shorttitle = {{IntroVAE}},
	urldate = {2020-07-14},
	booktitle = {Advances in neural information processing systems},
	author = {Huang, Huaibo and Li, Zhihang and He, Ran and Sun, Zhenan and Tan, Tieniu},
	month = oct,
	year = {2018}
}

@article{an_ae-ot-gan_2020,
	title = {{AE}-{OT}-{GAN}: {Training} {Gans} from {Data} {Specific} {Latent} {Distribution}},
	shorttitle = {Ae-{Ot}-{Gan}},
	journal = {arXiv},
	author = {An, Dongsheng and Guo, Yang and Zhang, Min and Qi, Xin and Lei, Na and Yau, Shing-Tung and Gu, Xianfeng},
	year = {2020}
}

@inproceedings{an_ae-ot_2020,
	title = {{AE}-{OT}: {A} {NEW} {GENERATIVE} {MODEL} {BASED} {ON} {EX}- {TENDED} {SEMI}-{DISCRETE} {OPTIMAL} {TRANSPORT}},
	language = {en},
	author = {An, Dongsheng and Guo, Yang and Lei, Na and Luo, Zhongxuan and Yau, Shing-Tung and Gu, Xianfeng},
	year = {2020},
	pages = {19},
}
Owner
Ruixu Geng(耿瑞旭)
Undergraduate 2015 - 2019 (Expected), Information and Communication Engineering, UESTC
Ruixu Geng(耿瑞旭)
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

Katsuya Hyodo 6 May 15, 2022
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022
From the basics to slightly more interesting applications of Tensorflow

TensorFlow Tutorials You can find python source code under the python directory, and associated notebooks under notebooks. Source code Description 1 b

Parag K Mital 5.6k Jan 09, 2023
Robustness via Cross-Domain Ensembles

Robustness via Cross-Domain Ensembles [ICCV 2021, Oral] This repository contains tools for training and evaluating: Pretrained models Demo code Traini

Visual Intelligence & Learning Lab, Swiss Federal Institute of Technology (EPFL) 27 Dec 23, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
Official code repository for Continual Learning In Environments With Polynomial Mixing Times

Official code for Continual Learning In Environments With Polynomial Mixing Times Continual Learning in Environments with Polynomial Mixing Times This

Sharath Raparthy 1 Dec 19, 2021
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022
Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification"

Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification" This is an end-to-end framework for accurate and robust left ventr

2 Jul 09, 2022
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.

#NeuralTalk Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational p

Andrej 5.3k Jan 07, 2023
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

GUPNet This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection". citation If you find our wo

Yan Lu 103 Dec 28, 2022
Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

夜听残荷 5 Sep 11, 2022
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Kin-Yiu, Wong 1.8k Jan 04, 2023