GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

Related tags

Deep LearningGUPNet
Overview

GUPNet

This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection".

vis2

citation

If you find our work useful in your research, please consider citing:

@article{lu2021geometry,
title={Geometry Uncertainty Projection Network for Monocular 3D Object Detection},
author={Lu, Yan and Ma, Xinzhu and Yang, Lei and Zhang, Tianzhu and Liu, Yating and Chu, Qi and Yan, Junjie and Ouyang, Wanli},
journal={arXiv preprint arXiv:2107.13774},year={2021}}

Usage

Train

Download the KITTI dataset from KITTI website, including left color images, camera calibration matrices and training labels.

Clone this project and then go to the code directory:

git clone https://github.com/SuperMHP/GUPNet.git
cd code

We train the model on the following environments:

Python 3.6
Pytorch 1.1
Cuda 9.0

You can build the environment easily by installing the requirements:

pip install -r requirements.yml

Train the model:

CUDA_VISIBLE_DEVICES=0,1,2 python tools/train_val.py

Evaluate

After training the model will directly feedback the detection files for evaluation (If so, you can skip this setep). But if you want to test a given checkpoint, you need to modify the "resume" of the "tester" in the code/experiments/config.yaml and then run:

python tools/train_val.py -e

After that, please use the kitti evaluation devkit (deails can be refered to FrustumPointNet) to evaluate:

g++ evaluate_object_3d_offline_apXX.cpp -o evaluate_object_3d_offline_ap
../../tools/kitti_eval/evaluate_object_3d_offline_apXX KITTI_LABEL_DIR ./output

We also provide the trained checkpoint which achieved the best multi-category performance on the validation set. It can be downloaded at here. This checkpoint performance is as follow:

Models [email protected]=0.7 [email protected]=0.5 [email protected]=0.5
Easy Mod Hard Easy Mod Hard Easy Mod Hard
original paper 22.76% 16.46% 13.72% - - - - - -
released chpt 23.19% 16.23% 13.57% 11.29% 7.05% 6.36% 9.49% 5.01% 4.14%

Test (I will modify this section to be more automatical in future)

Modify the train set to the trainval set (You can modify it in the code/libs/helpers/dataloader_helper.py), and then modify the input of the evaluation function to the test set (code/tools/train_val.py).

Compressed the output file to a zip file (Please note that this zip file do NOT include any root directory):

cd outputs/data
zip -r submission.zip .

submit this file to the KITTI page (You need to register an account.)

We also give our trained checkpoint on the trainval dataset. You can download it from here. This checkpoint performance is as follow (KITTI page):

Models [email protected]=0.7 [email protected]=0.5 [email protected]=0.5
Easy Mod Hard Easy Mod Hard Easy Mod Hard
original paper 20.11% 14.20% 11.77% 14.72% 9.53% 7.87% 4.18% 2.65% 2.09%
released chpt 22.26% 15.02% 13.12% 14.95% 9.76% 8.41% 5.58% 3.21% 2.66%

Other relative things

  1. The releases code is originally set to train on multi-category here. If you would like to train on the single category (Car), please modify the code/experiments/config.yaml. Single-category training can lead to higher performance on the Car.

  2. This implementation includes some tricks that do not describe in the paper. Please feel free to ask me in the issue. And I will also update the principle of them in the supplementary materials

  3. The overall code cannot completely remove randomness because we use some functions which do not have reproduced implementation (e.g. ROI align). So the performance may have a certain degree of jitter, which is normal for this project.

Contact

If you have any question about this project, please feel free to contact [email protected].

Owner
Yan Lu
Yan Lu
A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

George Gunter 4 Nov 14, 2022
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
3 Apr 20, 2022
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 EAMLP will come soon Jitto

MenghaoGuo 357 Dec 11, 2022
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Esteban Vilca 3 Dec 01, 2022
DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

OpenDILab 185 Dec 29, 2022
Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition

Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition Introduction Run attack: SGADV.py Objective function: foolbox/attacks/gradi

1 Jul 18, 2022
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022
Using Machine Learning to Create High-Res Fine Art

BIG.art: Using Machine Learning to Create High-Res Fine Art How to use GLIDE and BSRGAN to create ultra-high-resolution paintings with fine details By

Robert A. Gonsalves 13 Nov 27, 2022
AI drive app that can help user become beautiful.

爱美丽 Beauty 简体中文 Features Beauty is an AI drive app that can help user become beautiful. it contain those functions: face score cheek face beauty repor

Starved Midnight 1 Jan 30, 2022
Implementation of Graph Convolutional Networks in TensorFlow

Graph Convolutional Networks This is a TensorFlow implementation of Graph Convolutional Networks for the task of (semi-supervised) classification of n

Thomas Kipf 6.6k Dec 30, 2022
CaLiGraph Ontology as a Challenge for Semantic Reasoners ([email protected]'21)

CaLiGraph for Semantic Reasoning Evaluation Challenge This repository contains code and data to use CaLiGraph as a benchmark dataset in the Semantic R

Nico Heist 0 Jun 08, 2022
URIE: Universal Image Enhancementfor Visual Recognition in the Wild

URIE: Universal Image Enhancementfor Visual Recognition in the Wild This is the implementation of the paper "URIE: Universal Image Enhancement for Vis

Taeyoung Son 43 Sep 12, 2022
This package implements THOR: Transformer with Stochastic Experts.

THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation

Microsoft 45 Nov 22, 2022
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
performing moving objects segmentation using image processing techniques with opencv and numpy

Moving Objects Segmentation On this project I tried to perform moving objects segmentation using background subtraction technique. the introduced meth

Mohamed Magdy 15 Dec 12, 2022