GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

Related tags

Deep LearningGUPNet
Overview

GUPNet

This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection".

vis2

citation

If you find our work useful in your research, please consider citing:

@article{lu2021geometry,
title={Geometry Uncertainty Projection Network for Monocular 3D Object Detection},
author={Lu, Yan and Ma, Xinzhu and Yang, Lei and Zhang, Tianzhu and Liu, Yating and Chu, Qi and Yan, Junjie and Ouyang, Wanli},
journal={arXiv preprint arXiv:2107.13774},year={2021}}

Usage

Train

Download the KITTI dataset from KITTI website, including left color images, camera calibration matrices and training labels.

Clone this project and then go to the code directory:

git clone https://github.com/SuperMHP/GUPNet.git
cd code

We train the model on the following environments:

Python 3.6
Pytorch 1.1
Cuda 9.0

You can build the environment easily by installing the requirements:

pip install -r requirements.yml

Train the model:

CUDA_VISIBLE_DEVICES=0,1,2 python tools/train_val.py

Evaluate

After training the model will directly feedback the detection files for evaluation (If so, you can skip this setep). But if you want to test a given checkpoint, you need to modify the "resume" of the "tester" in the code/experiments/config.yaml and then run:

python tools/train_val.py -e

After that, please use the kitti evaluation devkit (deails can be refered to FrustumPointNet) to evaluate:

g++ evaluate_object_3d_offline_apXX.cpp -o evaluate_object_3d_offline_ap
../../tools/kitti_eval/evaluate_object_3d_offline_apXX KITTI_LABEL_DIR ./output

We also provide the trained checkpoint which achieved the best multi-category performance on the validation set. It can be downloaded at here. This checkpoint performance is as follow:

Models [email protected]=0.7 [email protected]=0.5 [email protected]=0.5
Easy Mod Hard Easy Mod Hard Easy Mod Hard
original paper 22.76% 16.46% 13.72% - - - - - -
released chpt 23.19% 16.23% 13.57% 11.29% 7.05% 6.36% 9.49% 5.01% 4.14%

Test (I will modify this section to be more automatical in future)

Modify the train set to the trainval set (You can modify it in the code/libs/helpers/dataloader_helper.py), and then modify the input of the evaluation function to the test set (code/tools/train_val.py).

Compressed the output file to a zip file (Please note that this zip file do NOT include any root directory):

cd outputs/data
zip -r submission.zip .

submit this file to the KITTI page (You need to register an account.)

We also give our trained checkpoint on the trainval dataset. You can download it from here. This checkpoint performance is as follow (KITTI page):

Models [email protected]=0.7 [email protected]=0.5 [email protected]=0.5
Easy Mod Hard Easy Mod Hard Easy Mod Hard
original paper 20.11% 14.20% 11.77% 14.72% 9.53% 7.87% 4.18% 2.65% 2.09%
released chpt 22.26% 15.02% 13.12% 14.95% 9.76% 8.41% 5.58% 3.21% 2.66%

Other relative things

  1. The releases code is originally set to train on multi-category here. If you would like to train on the single category (Car), please modify the code/experiments/config.yaml. Single-category training can lead to higher performance on the Car.

  2. This implementation includes some tricks that do not describe in the paper. Please feel free to ask me in the issue. And I will also update the principle of them in the supplementary materials

  3. The overall code cannot completely remove randomness because we use some functions which do not have reproduced implementation (e.g. ROI align). So the performance may have a certain degree of jitter, which is normal for this project.

Contact

If you have any question about this project, please feel free to contact [email protected].

Owner
Yan Lu
Yan Lu
Fast RFC3339 compliant Python date-time library

udatetime: Fast RFC3339 compliant date-time library Handling date-times is a painful act because of the sheer endless amount of formats used by people

Simon Pirschel 235 Oct 25, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi

Frank Odom 36 Dec 21, 2022
Lolviz - A simple Python data-structure visualization tool for lists of lists, lists, dictionaries; primarily for use in Jupyter notebooks / presentations

lolviz By Terence Parr. See Explained.ai for more stuff. A very nice looking javascript lolviz port with improvements by Adnan M.Sagar. A simple Pytho

Terence Parr 785 Dec 30, 2022
Code accompanying the paper Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs (Chen et al., CVPR 2020, Oral).

Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs This repository contains PyTorch implementation of our pa

Shizhe Chen 178 Dec 29, 2022
Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.

Hand Gesture Volume Controller Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out). Code Firstly I have created a

Tejas Prajapati 16 Sep 11, 2021
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

Project This repo has been populated by an initial template to help get you started. Please make sure to update the content to build a great experienc

Microsoft 674 Dec 26, 2022
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

VAMSHI CHOWDARY 3 Jun 22, 2022
Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.

light-weight-depth-estimation Boosting Light-Weight Depth Estimation Via Knowledge Distillation, https://arxiv.org/abs/2105.06143 Junjie Hu, Chenyou F

Junjie Hu 13 Dec 10, 2022
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

TEQS Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has n

The Eigensolvers 53 May 18, 2022
PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021. IBRN

Google Interns 371 Jan 03, 2023
Implementations of LSTM: A Search Space Odyssey variants and their training results on the PTB dataset.

An LSTM Odyssey Code for training variants of "LSTM: A Search Space Odyssey" on Fomoro. Check out the blog post. Training Install TensorFlow. Clone th

Fomoro AI 95 Apr 13, 2022
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag

Hyeonwoo Kang 2.4k Jan 04, 2023
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
PyTorch reimplementation of the paper Involution: Inverting the Inherence of Convolution for Visual Recognition [CVPR 2021].

Involution: Inverting the Inherence of Convolution for Visual Recognition Unofficial PyTorch reimplementation of the paper Involution: Inverting the I

Christoph Reich 100 Dec 01, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
Pytorch-Swin-Unet-V2 - a modified version of Swin Unet based on Swin Transfomer V2

Swin Unet V2 Swin Unet V2 is a modified version of Swin Unet arxiv based on Swin

Chenxu Peng 26 Dec 03, 2022