A pytorch-based real-time segmentation model for autonomous driving

Overview

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation

This project contains the Pytorch implementation for the proposed CFPNet: paper

Result
Result
Real-time semantic segmentation is playing a more important role in computer vision, due to the growing demand for mobile devices and autonomous driving. Therefore, it is very important to achieve a good trade-off among performance, model size and inference speed. In this paper, we propose a Channel-wise Feature Pyramid (CFP) module to balance those factors. Based on the CFP module, we built CFPNet for real-time semantic segmentation which applied a series of dilated convolution channels to extract effective features. Experiments on Cityscapes and CamVid datasets show that the proposed CFPNet achieves an effective combination of those factors. For the Cityscapes test dataset, CFPNet achievse 70.1% class-wise mIoU with only 0.55 million parameters and 2.5 MB memory. The inference speed can reach 30 FPS on a single RTX 2080Ti GPU (GPU usage 60%) with a 1024×2048-pixel image.

Installation

  • Enviroment: Python 3.6; Pytorch 1.0; CUDA 9.0; cuDNN V7
  • Install some packages:
pip install opencv-python pillow numpy matplotlib
  • Clone this repository
git clone https://github.com/AngeLouCN/CFPNet
  • One GPU with 11GB memory is needed

Dataset

You need to download the two dataset——CamVid and Cityscapes, and put the files in the datasetfolder with following structure.

|—— camvid
|    ├── train
|    ├── test
|    ├── val 
|    ├── trainannot
|    ├── testannot
|    ├── valannot
|    ├── camvid_trainval_list.txt
|    ├── camvid_train_list.txt
|    ├── camvid_test_list.txt
|    └── camvid_val_list.txt
├── cityscapes
|    ├── gtCoarse
|    ├── gtFine
|    ├── leftImg8bit
|    ├── cityscapes_trainval_list.txt
|    ├── cityscapes_train_list.txt
|    ├── cityscapes_test_list.txt
|    └── cityscapes_val_list.txt  

Training

  • You can run: python train.py -hto check the detail of optional arguments. In the train.py, you can set the dataset, train type, epochs and batch size, etc.
  • training on Cityscapes train set.
python train.py --dataset cityscapes
  • training on Camvid train and val set.
python train.py --dataset camvid --train_type trainval --max_epochs 1000 --lr 1e-3 --batch_size 16
  • During training course, every 50 epochs, we will record the mean IoU of train set, validation set and training loss to draw a plot, so you can check whether the training process is normal.
Val mIoU vs Epochs Train loss vs Epochs
Result
Result

Testing

  • After training, the checkpoint will be saved at checkpointfolder, you can use test.pyto predict the result.
python test.py --dataset ${camvid, cityscapes} --checkpoint ${CHECKPOINT_FILE}

Evalution

  • For those dataset that do not provide label on the test set (e.g. Cityscapes), you can use predict.py to save all the output images, then submit to official webpage for evaluation.
python test.py --dataset ${camvid, cityscapes} --checkpoint ${CHECKPOINT_FILE}

Inference Speed

  • You can run the eval_fps.py to test the model inference speed, input the image size such as 1024,2048.
python eval_fps.py 1024,2048

Results

  • Results for CFPNet-V1, CFPNet-V2 and CFPNet-v3:
Dataset Model mIoU
Cityscapes CFPNet-V1 60.4%
Cityscapes CFPNet-V2 66.5%
Cityscapes CFPNet-V3 70.1%
  • Sample results: (from top to bottom is Original, CFPNet-V1, CFPNet-V2 and CFPNet-v3)
Result
Category_acc vs size Class_acc vs size
Result
Result
Class_acc vs parameter Class_acc vs speed
Result
Result

Comparsion

  • Results of Cityscapes
Result
  • Results of CamVid
Result

Citation

If you think our work is helpful, please consider to cite:

@article{lou2021cfpnet,
  title={CFPNet: Channel-wise Feature Pyramid for Real-Time Semantic Segmentation},
  author={Lou, Ange and Loew, Murray},
  journal={arXiv preprint arXiv:2103.12212},
  year={2021}
}
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
End-to-end machine learning project for rices detection

Basmatinet Welcome to this project folks ! Whether you like it or not this project is all about riiiiice or riz in french. It is also about Deep Learn

Béranger 47 Jun 18, 2022
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 04, 2023
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu

Costas Mavromatis 21 Dec 03, 2022
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
Some pre-commit hooks for OpenMMLab projects

pre-commit-hooks Some pre-commit hooks for OpenMMLab projects. Using pre-commit-hooks with pre-commit Add this to your .pre-commit-config.yaml - rep

OpenMMLab 16 Nov 29, 2022
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
Metrics to evaluate quality and efficacy of synthetic datasets.

An Open Source Project from the Data to AI Lab, at MIT Metrics for Synthetic Data Generation Projects Website: https://sdv.dev Documentation: https://

The Synthetic Data Vault Project 129 Jan 03, 2023
A modular application for performing anomaly detection in networks

Deep-Learning-Models-for-Network-Annomaly-Detection The modular app consists for mainly three annomaly detection algorithms. The system supports model

Shivam Patel 1 Dec 09, 2021
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

226 Jan 08, 2023
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi

Giacomo Arcieri 1 Mar 21, 2022
Acoustic mosquito detection code with Bayesian Neural Networks

HumBugDB Acoustic mosquito detection with Bayesian Neural Networks. Extract audio or features from our large-scale dataset on Zenodo. This repository

31 Nov 28, 2022