PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Overview

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Created by Prarthana Bhattacharyya.

Disclaimer: This is not an official product and is meant to be a proof-of-concept and for academic/educational use only.

This repository contains the PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime, to be presented at ICASSP-2022.

Self-supervision has shown outstanding results for natural language processing, and more recently, for image recognition. Simultaneously, vision transformers and its variants have emerged as a promising and scalable alternative to convolutions on various computer vision tasks. In this paper, we are the first to question if self-supervised vision transformers (SSL-ViTs) can be adapted to two important computer vision tasks in the low-label, high-data regime: few-shot image classification and zero-shot image retrieval. The motivation is to reduce the number of manual annotations required to train a visual embedder, and to produce generalizable, semantically meaningful and robust embeddings.


Results

  • SSL-ViT + few-shot image classification:
  • Qualitative analysis for base-classes chosen by supervised CNN and SSL-ViT for few-shot distribution calibration:
  • SSL-ViT + zero-shot image retrieval:

Pretraining Self-Supervised ViT

  • Run DINO with ViT-small network on a single node with 4 GPUs for 100 epochs with the following command.
cd dino/
python -m torch.distributed.launch --nproc_per_node=4 main_dino.py --arch vit_small --data_path /path/to/imagenet/train --output_dir /path/to/saving_dir
  • For mini-ImageNet pretraining, we use the classes listed in: ssl-vit-fewshot/data/ImageNetSSLTrainingSplit_mini.txt For tiered-ImageNet pretraining, we use the classes listed in: ssl-vit-fewshot/data/ImageNetSSLTrainingSplit_tiered.txt
  • For CUB-200, Cars-196 and SOP, we use the pretrained model from:
import torch
vits16 = torch.hub.load('facebookresearch/dino:main', 'dino_vits16')

Visual Representation Learning with Self-Supervised ViT for Low-Label High-Data Regime

Dataset Preparation

Please follow the instruction in FRN for few-shot image classification and RevisitDML for zero-shot image retrieval to download the datasets and put the corresponding datasets in ssl-vit-fewshot/data and DIML/data folder.

Training and Evaluation for few-shot image classification

  • The first step is to extract features for base and novel classes using the pretrained SSL-ViT.
  • get_dino_miniimagenet_feats.ipynb extracts SSL-ViT features for the base and novel classes.
  • Change the hyper-parameter data_path to use CUB or tiered-ImageNet.
  • The SSL-ViT checkpoints for the various datasets are provided below (Note: this has only been trained without labels). We also provide the extracted features which need to be stored in ssl-vit-fewshot/dino_features_data/.
arch dataset download extracted-train extracted-test
ViT-S/16 mini-ImageNet mini_imagenet_checkpoint.pth train.p test.p
ViT-S/16 tiered-ImageNet tiered_imagenet_checkpoint.pth train.p test.p
ViT-S/16 CUB cub_checkpoint.pth train.p test.p
  • For n-way-k-shot evaluation, we provide miniimagenet_evaluate_dinoDC.ipynb.

Training and Evaluation for zero-shot image retrieval

  • To train the baseline CNN models, run the scripts in DIML/scripts/baselines. The checkpoints are saved in Training_Results folder. For example:
cd DIML/
CUDA_VISIBLE_DEVICES=0 ./script/baselines/cub_runs.sh
  • To train the supervised ViT and self-supervised ViT:
cp -r ssl-vit-retrieval/architectures/* DIML/ssl-vit-retrieval/architectures/
CUDA_VISIBLE_DEVICES=0 ./script/baselines/cub_runs.sh --arch vits
CUDA_VISIBLE_DEVICES=0 ./script/baselines/cub_runs.sh --arch dino
  • To test the models, first edit the checkpoint paths in test_diml.py, then run
CUDA_VISIBLE_DEVICES=0 ./scripts/diml/test_diml.sh cub200
dataset Loss SSL-ViT-download
CUB Margin cub_ssl-vit-margin.pth
CUB Proxy-NCA cub_ssl-vit-proxynca.pth
CUB Multi-Similarity cub_ssl-vit-ms.pth
Cars-196 Margin cars_ssl-vit-margin.pth
Cars-196 Proxy-NCA cars_ssl-vit-proxynca.pth
Cars-196 Multi-Similarity cars_ssl-vit-ms.pth

Acknowledgement

The code is based on:

Owner
Prarthana Bhattacharyya
Ph.D. Candidate @WISELab-UWaterloo
Prarthana Bhattacharyya
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes

Jacob Gildenblat 322 Dec 17, 2022
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
Spectralformer: Rethinking hyperspectral image classification with transformers

Spectralformer: Rethinking hyperspectral image classification with transformers Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza

Danfeng Hong 102 Dec 29, 2022
AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

32 Sep 21, 2022
Job Assignment System by Real-time Emotion Detection

Emotion-Detection Job Assignment System by Real-time Emotion Detection Emotion is the essential role of facial expression and it could provide a lot o

1 Feb 08, 2022
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias

tofis 24 Oct 08, 2022
A Simple Long-Tailed Rocognition Baseline via Vision-Language Model

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

Teli Ma 4 Jan 20, 2022
Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Interactive All-Hex Meshing via Cuboid Decomposition Video demonstration This repository contains an interactive software to the PolyCube-based hex-me

Lingxiao Li 131 Dec 05, 2022
Code for ICCV2021 paper PARE: Part Attention Regressor for 3D Human Body Estimation

PARE: Part Attention Regressor for 3D Human Body Estimation [ICCV 2021] PARE: Part Attention Regressor for 3D Human Body Estimation, Muhammed Kocabas,

Muhammed Kocabas 277 Jan 03, 2023
Depression Asisstant GDSC Challenge Solution

Depression Asisstant can help you give solution. Please using Python version 3.9.5 for contribute.

Ananda Rauf 1 Jan 30, 2022