DeepLab2: A TensorFlow Library for Deep Labeling

Related tags

Deep Learningdeeplab2
Overview

DeepLab2: A TensorFlow Library for Deep Labeling

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks, including, but not limited to semantic segmentation, instance segmentation, panoptic segmentation, depth estimation, or even video panoptic segmentation.

Deep labeling refers to solving computer vision problems by assigning a predicted value for each pixel in an image with a deep neural network. As long as the problem of interest could be formulated in this way, DeepLab2 should serve the purpose. Additionally, this codebase includes our recent and state-of-the-art research models on deep labeling. We hope you will find it useful for your projects.

Installation

See Installation.

Dataset preparation

The dataset needs to be converted to TFRecord. We provide some examples below.

Some guidances about how to convert your own dataset.

Projects

We list a few projects that use DeepLab2.

Colab Demo

Running DeepLab2

See Getting Started. In short, run the following command:

To run DeepLab2 on GPUs, the following command should be used:

python training/train.py \
    --config_file=${CONFIG_FILE} \
    --mode={train | eval | train_and_eval | continuous_eval} \
    --model_dir=${BASE_MODEL_DIRECTORY} \
    --num_gpus=${NUM_GPUS}

Change logs

See Change logs for recent updates.

Contacts (Maintainers)

Please check FAQ if you have some questions before reporting the issues.

Disclaimer

  • Note that this library contains our re-implemented DeepLab models in TensorFlow2, and thus may have some minor differences from the published papers (e.g., learning rate).

  • This is not an official Google product.

Citing DeepLab2

If you find DeepLab2 useful for your project, please consider citing DeepLab2 along with the relevant DeepLab series.

  • DeepLab2:
@article{deeplab2_2021,
  author={Mark Weber and Huiyu Wang and Siyuan Qiao and Jun Xie and Maxwell D. Collins and Yukun Zhu and Liangzhe Yuan and Dahun Kim and Qihang Yu and Daniel Cremers and Laura Leal-Taixe and Alan L. Yuille and Florian Schroff and Hartwig Adam and Liang-Chieh Chen},
  title={{DeepLab2: A TensorFlow Library for Deep Labeling}},
  journal={arXiv: 2106.09748},
  year={2021}
}

References

  1. Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. "The cityscapes dataset for semantic urban scene understanding." In CVPR, 2016.

  2. Andreas Geiger, Philip Lenz, and Raquel Urtasun. "Are we ready for autonomous driving? the kitti vision benchmark suite." In CVPR, 2012.

  3. Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill Stachniss, and Jurgen Gall. "Semantickitti: A dataset for semantic scene understanding of lidar sequences." In ICCV, 2019.

  4. Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Piotr Dollar. "Panoptic segmentation." In CVPR, 2019.

  5. Dahun Kim, Sanghyun Woo, Joon-Young Lee, and In So Kweon. "Video panoptic segmentation." In CVPR, 2020.

  6. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence Zitnick. "Microsoft COCO: Common objects in context." In ECCV, 2014.

  7. Patrick Dendorfer, Aljosa Osep, Anton Milan, Konrad Schindler, Daniel Cremers, Ian Reid, Stefan Roth, and Laura Leal-Taixe. "MOTChallenge: A Benchmark for Single-camera Multiple Target Tracking." IJCV, 2020.

Owner
Google Research
Google Research
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
Repo for Photon-Starved Scene Inference using Single Photon Cameras, ICCV 2021

Photon-Starved Scene Inference using Single Photon Cameras ICCV 2021 Arxiv Project Video Bhavya Goyal, Mohit Gupta University of Wisconsin-Madison Abs

Bhavya Goyal 5 Nov 15, 2022
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
交互式标注软件,暂定名 iann

iann 交互式标注软件,暂定名iann。 安装 按照官网介绍安装paddle。 安装其他依赖 pip install -r requirements.txt 运行 git clone https://github.com/PaddleCV-SIG/iann/ cd iann python iann

294 Dec 30, 2022
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

WeiYang 798 Jan 01, 2023
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
Generalized hybrid model for mode-locked laser diodes with an extended passive cavity

GenHybridMLLmodel Generalized hybrid model for mode-locked laser diodes with an extended passive cavity This hybrid simulation strategy combines a tra

Stijn Cuyvers 3 Sep 21, 2022
Toolkit for collecting and applying prompts

PromptSource Promptsource is a toolkit for collecting and applying prompts to NLP datasets. Promptsource uses a simple templating language to programa

BigScience Workshop 998 Jan 03, 2023
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
Deep-learning-roadmap - All You Need to Know About Deep Learning - A kick-starter

Deep Learning - All You Need to Know Sponsorship To support maintaining and upgrading this project, please kindly consider Sponsoring the project deve

Instill AI 4.4k Dec 26, 2022
Dynamic Bottleneck for Robust Self-Supervised Exploration

Dynamic Bottleneck Introduction This is a TensorFlow based implementation for our paper on "Dynamic Bottleneck for Robust Self-Supervised Exploration"

Bai Chenjia 4 Nov 14, 2022
Liver segmentation using MONAI and pytorch

Machine Learning use case in the field of Healthcare. In this project MONAI and pytorch frameworks are used for 3D Liver segmentation.

Abhishek Gajbhiye 2 May 30, 2022
pytorch implementation of trDesign

trdesign-pytorch This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port o

Learn Ventures Inc. 41 Dec 29, 2022
Must-read Papers on Physics-Informed Neural Networks.

PINNpapers Contributed by IDRL lab. Introduction Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017.

IDRL 330 Jan 07, 2023
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022