Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Overview

Event Queue Dialect

Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Motivation

The main motivation of the event queue dialect is to efficiently estimate performance of programs running on heterogenous accelerators. The dialect is designed to bridge the gap between low-level hardware specific dialects and high-level dialects with little hardware specific information, thus facilitating custom lowering among different design choices. In particular, the EventQueue dialect supports modeling memory size constraints, bandwidth constraints, and processing time across a large number of heterogenous processors with distributed event-based control.

By and large, event queue dialect is design to estimate performance of concurrent devices. It supports:

  • Arbitrary hardware hierarchy and each hardware with its own properties.

  • Modeling data movement and buffer allocation that is critical to energy and efficiency estimation.

  • Model concurrency between heterogenous devices.

Check further documentation to see how the goals are achieved.

EQueue Dialect in MLIR Lowering Pipeline

lowering_pipeline

Event queue dialect is designed to do performance analysis.

Because there is a gap between high level dialect that has no structure information, and low level dialect that is too detail to analyze, event queue dialect bridges them.

The input for the event queue dialect is high level control dialect without structure and the output will be dialect describing detailed structure information.

In the lowering pipeline, equeue dialect is at the same level as gpu dialect. The difference is that existing gpu dialect assumes a synchronous gpu model and try to communicate with gpu.barrier among concurrent gpus, while equeue dialect models a more general design, where it allows any kinds of structure, thus allowing maximum flexibility. To describe the complexity of any possible structure in a flexible device like FPGA, equeue dialect develops a general semantics for asynchronous communication between concurrent devices.

How to Use

Dependency

The dependency of this project is MLIR. Because MLIR is project that frequently being updated. When I started the EQueue project, The latest stable version was 12-init. One needs checkout to the right version.

git clone https://github.com/llvm/llvm-project.git
git fetch --all --tags
git checkout tags/llvmorg-12-init -b 
   

   

and then follow MLIR quick start to build executable.

Quick Start

After git clone and cd the repo,

mkdir build
cp *.sh build/
cd build
#change LLVM_EXTERNAL_LIT and MLIR_DIR in run.sh to your local directory
sh config; sh run.sh
./bin/equeue-opt ../test/Equeue/[path-to-input-file.mlir]

Debug Outputs

If one want to turn on debug outputs with -debug or debug-only when there are multiple debugging options

./bin/equeue-opt ../test/Equeue/[path-to-input-file.mlir] -debug
# when there are multiple debugging options
./bin/equeue-opt ../test/Equeue/[path-to-input-file.mlir] -debug-only=command_processor
# to redirect output to file
./bin/equeue-opt ../test/Equeue/[path-to-input-file.mlir] -debug > & report

Visualization

By default equeue-opt will generate a Trace Event Format JSON file to test/Equeue/out.json . You can specify the output file name with -json

./bin/equeue-opt ../test/Equeue/[path-to-input-file.mlir] -json [path-to-json-file.json]

The output JSON file can be viewed in chrome://tracing/

Below is the visualization of running test/EQueue/gpu.mlir

visualization

Examples

You may want to check on Examples on the convolution and the finite impulse response. Detailed explanation can be found in the example directory

Paper and Citation

The paper is accepted to HPCA 2022. We upload a preprint to Arxiv.

Contact

I am Zhijing at Cornell University. This project is originally my Xilinx internship project. I extend after the internship and now it is accepted by HPCA 2022. I will put the reference later. If getting to any trouble, you can contact me at [email protected]

Owner
Cornell Capra
Computer architecture & programming abstractions at Cornell University.
Cornell Capra
Towards Fine-Grained Reasoning for Fake News Detection

FinerFact This is the PyTorch implementation for the FinerFact model in the AAAI 2022 paper Towards Fine-Grained Reasoning for Fake News Detection (Ar

Ahren_Jin 15 Dec 15, 2022
Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos This repository is the official tensorflow python implementation

Yasamin Jafarian 287 Jan 06, 2023
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
[ICML 2021] A fast algorithm for fitting robust decision trees.

GROOT: Growing Robust Trees Growing Robust Trees (GROOT) is an algorithm that fits binary classification decision trees such that they are robust agai

Cyber Analytics Lab 17 Nov 21, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

The Stem Cell Hypothesis Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP

Emory NLP 5 Jul 08, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
Solutions of Reinforcement Learning 2nd Edition

Solutions of Reinforcement Learning, An Introduction

YIFAN WANG 1.4k Dec 30, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork đź‘€ : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
Contrastive Feature Loss for Image Prediction

Contrastive Feature Loss for Image Prediction We provide a PyTorch implementation of our contrastive feature loss presented in: Contrastive Feature Lo

Alex Andonian 44 Oct 05, 2022
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022
Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch

MeMOT - Pytorch (wip) Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch. This paper is just one in a line of work, but importan

Phil Wang 15 May 09, 2022