[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

Related tags

Deep LearningCORE
Overview

CORE

This is the official PyTorch implementation for the paper:

Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space. SIGIR 2022 short.

Overview

We argue that session embedding encoded by non-linear encoder is usually not in the same representation space as item embeddings, resulting in the inconsistent prediction issue. In this work, we aim at unifying the representation space throughout the encoding and decoding process in session-based recommendation, and propose a simple and effective framework named CORE.

Requirements

recbole>=1.0.0
python==3.7
pytorch==1.7.1
cudatoolkit==10.1

Datasets

you can download the processed datasets from Google Drive. Then,

mv DATASET.zip dataset
unzip DATASET.zip

DATASET can be one of

  • diginetica
  • nowplaying
  • retailrocket
  • tmall
  • yoochoose

Reproduction

python main.py --model MODEL --dataset DATASET

MODEL can be one of

  • trm
  • ave

Results

Here we show results on Diginetica for example, other results can be found in our paper.

Note that we use a more standard and unified pipeline for fair evaluation and preventing overfitting.

We split the sessions in each dataset into train/validation/test set in temporal order in a ratio of 8:1:1. We report results on the test set with models that gain the highest performance on the validation set.

Model [email protected] [email protected]
CORE-ave 50.21 18.07
CORE-trm 52.89 18.58

Acknowledgement

The implementation is based on the open-source recommendation library RecBole and RecBole-GNN.

Please cite the following papers as the references if you use our codes or the processed datasets.

@inproceedings{hou2022core,
  author = {Yupeng Hou and Binbin Hu and Zhiqiang Zhang and Wayne Xin Zhao},
  title = {CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space},
  booktitle = {{SIGIR}},
  year = {2022}
}


@inproceedings{zhao2021recbole,
  title={Recbole: Towards a unified, comprehensive and efficient framework for recommendation algorithms},
  author={Wayne Xin Zhao and Shanlei Mu and Yupeng Hou and Zihan Lin and Kaiyuan Li and Yushuo Chen and Yujie Lu and Hui Wang and Changxin Tian and Xingyu Pan and Yingqian Min and Zhichao Feng and Xinyan Fan and Xu Chen and Pengfei Wang and Wendi Ji and Yaliang Li and Xiaoling Wang and Ji-Rong Wen},
  booktitle={{CIKM}},
  year={2021}
}
Owner
RUCAIBox
An enthusiastic group that aims to create beautiful things with AI
RUCAIBox
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
Scaling Vision with Sparse Mixture of Experts

Scaling Vision with Sparse Mixture of Experts This repository contains the code for training and fine-tuning Sparse MoE models for vision (V-MoE) on I

Google Research 290 Dec 25, 2022
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
CowHerd is a partially-observed reinforcement learning environment

CowHerd is a partially-observed reinforcement learning environment, where the player walks around an area and is rewarded for milking cows. The cows try to escape and the player can place fences to h

Danijar Hafner 6 Mar 06, 2022
MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving.

MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving. It is a comprehensive framework for research purpose that integrates popular MWP benchmark datasets and typical deep learnin

119 Jan 04, 2023
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Yikang Shen 572 Nov 21, 2022
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.

EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI

Zengqun Zhao 119 Jan 08, 2023
Fast Soft Color Segmentation

Fast Soft Color Segmentation

3 Oct 29, 2022
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
TResNet: High Performance GPU-Dedicated Architecture

TResNet: High Performance GPU-Dedicated Architecture paperV2 | pretrained models Official PyTorch Implementation Tal Ridnik, Hussam Lawen, Asaf Noy, I

426 Dec 28, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Probabilistic Programming and Statistical Inference in PyTorch

PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The

Stefano Peluchetti 109 Nov 26, 2022
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago Suárez 125 Dec 31, 2022
Some experiments with tennis player aging curves using Hilbert space GPs in PyMC. Only experimental for now.

NOTE: This is still being developed! Setup notes This document uses Jeff Sackmann's tennis data. You can obtain it as follows: git clone https://githu

Martin Ingram 1 Jan 20, 2022
Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstrac

2 Apr 14, 2022