Using VapourSynth with super resolution models and speeding them up with TensorRT.

Overview

VSGAN-tensorrt-docker

Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined with rlaphoenix/VSGAN. This repo makes the usage of tiling and ESRGAN models very easy. Models can be found on the wiki page. Further model architectures are planned to be added later on.

Currently working:

  • ESRGAN
  • RealESRGAN (adjust model load manually in inference.py, settings wont be adjusted automatically currently)

Usage:

# install docker, command for arch
yay -S docker nvidia-docker nvidia-container-toolkit
# Put the dockerfile in a directory and run that inside that directory
docker build -t vsgan_tensorrt:latest .
# run with a mounted folder
docker run --privileged --gpus all -it --rm -v /home/Desktop/tensorrt:/workspace/tensorrt vsgan_tensorrt:latest
# you can use it in various ways, ffmpeg example
vspipe --y4m inference.py - | ffmpeg -i pipe: example.mkv

If docker does not want to start, try this before you use docker:

# fixing docker errors
systemctl start docker
sudo chmod 666 /var/run/docker.sock

Windows is mostly similar, but the path needs to be changed slightly:

Example for C://path
docker run --privileged --gpus all -it --rm -v //c/path:/workspace/tensorrt vsgan_tensorrt:latest

If you don't want to use docker, vapoursynth install commands are here and a TensorRT example is here.

Set the input video path in inference.py and access videos with the mounted folder.

It is also possible to directly pipe the video into mpv, but you most likely wont be able to archive realtime speed. Change the mounted folder path to your own videofolder and use the mpv dockerfile instead. If you use a very efficient model, it may be possible on a very good GPU. Only tested in Manjaro.

yay -S pulseaudio

# i am not sure if it is needed, but go into pulseaudio settings and check "make pulseaudio network audio devices discoverable in the local network" and reboot

# start docker
docker run --rm -i -t \
    --network host \
    -e DISPLAY \
    -v /home/Schreibtisch/test/:/home/mpv/media \
    --ipc=host \
    --privileged \
    --gpus all \
    -e PULSE_COOKIE=/run/pulse/cookie \
    -v ~/.config/pulse/cookie:/run/pulse/cookie \
    -e PULSE_SERVER=unix:${XDG_RUNTIME_DIR}/pulse/native \
    -v ${XDG_RUNTIME_DIR}/pulse/native:${XDG_RUNTIME_DIR}/pulse/native \
    vsgan_tensorrt:latest
    
# run mpv
vspipe --y4m inference.py - | mpv -
Comments
  • Invalid data found when processing input

    Invalid data found when processing input

    Hey when i start the inference.py script this happen :

    someone can help me ?

    
    > ffmpeg version N-62110-g4d45f5acbd-static https://johnvansickle.com/ffmpeg/  Copyright (c) 2000-2022 the FFmpeg developers
    >   built with gcc 8 (Debian 8.3.0-6)
    >   configuration: --enable-gpl --enable-version3 --enable-static --disable-debug --disable-ffplay --disable-indev=sndio --disable-outdev=sndio --cc=gcc --enable-fontconfig --enable-frei0r --enable-gnutls --enable-gmp --enable-libgme --enable-gray --enable-libaom --enable-libfribidi --enable-libass --enable-libvmaf --enable-libfreetype --enable-libmp3lame --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libopenjpeg --enable-librubberband --enable-libsoxr --enable-libspeex --enable-libsrt --enable-libvorbis --enable-libopus --enable-libtheora --enable-libvidstab --enable-libvo-amrwbenc --enable-libvpx --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxml2 --enable-libdav1d --enable-libxvid --enable-libzvbi --enable-libzimg
    >   libavutil      57. 26.100 / 57. 26.100
    >   libavcodec     59. 33.100 / 59. 33.100
    >   libavformat    59. 24.100 / 59. 24.100
    >   libavdevice    59.  6.100 / 59.  6.100
    >   libavfilter     8. 40.100 /  8. 40.100
    >   libswscale      6.  6.100 /  6.  6.100
    >   libswresample   4.  6.100 /  4.  6.100
    >   libpostproc    56.  5.100 / 56.  5.100
    > Information: Generating grammar tables from /usr/lib/python3.8/lib2to3/Grammar.txt
    > Information: Generating grammar tables from /usr/lib/python3.8/lib2to3/PatternGrammar.txt
    > Script evaluation failed:
    > Python exception: libtorch_cuda_cu.so: cannot open shared object file: No such file or directory
    > 
    > Traceback (most recent call last):
    >   File "src\cython\vapoursynth.pyx", line 2890, in vapoursynth._vpy_evaluate
    >   File "src\cython\vapoursynth.pyx", line 2891, in vapoursynth._vpy_evaluate
    >   File "inference.py", line 85, in <module>
    >     clip = ESRGAN_inference(clip=clip, model_path="/workspace/RealESRGAN_x4plus_anime_6B.pth", tile_x=480, tile_y=480, tile_pad=16, fp16=False, tta=False, tta_mode=1)
    >   File "/workspace/tensorrt/src/esrgan.py", line 680, in ESRGAN_inference
    >     import torch_tensorrt
    >   File "/usr/local/lib/python3.8/dist-packages/torch_tensorrt/__init__.py", line 11, in <module>
    >     from torch_tensorrt._compile import *
    >   File "/usr/local/lib/python3.8/dist-packages/torch_tensorrt/_compile.py", line 2, in <module>
    >     from torch_tensorrt import _enums
    >   File "/usr/local/lib/python3.8/dist-packages/torch_tensorrt/_enums.py", line 1, in <module>
    >     from torch_tensorrt._C import dtype, DeviceType, EngineCapability, TensorFormat
    > ImportError: libtorch_cuda_cu.so: cannot open shared object file: No such file or directory
    > 
    > pipe:: Invalid data found when processing input
    
    
    opened by NeoBurgerYT 10
  • Module not found 'scipy'

    Module not found 'scipy'

    I can't run my inference.py without getting this error message. Can someone direct me to where I can get the repo?

    File "/usr/local/lib/python3.8/dist-packages/mmedit/core/evaluation/metrics.py", line 7, in from scipy.ndimage import convolve ModuleNotFoundError: No module named 'scipy'

    pipe:: Invalid data found when processing input

    opened by terminatedkhla 8
  • Tutorial?

    Tutorial?

    Hi! This is amazing technology! I’m blown away. I’d love to contact you directly on how to use it in colab, I’m quite confused with the process. I’ve tried running it but not sure I’m running it correctly. Thanks in advance!

    opened by AIManifest 6
  • Trying On A M1 Mac

    Trying On A M1 Mac

    So I followed this tutorial https://www.youtube.com/watch?v=B134jvhO8yk&t=0s But when docker run --privileged --gpus all -it --rm -v /home/vsgan_path/:/workspace/tensorrt styler00dollar/vsgan_tensorrt:latest it just gives me an error that it doesn't find the right amd64 or somthing and I rage quit deleted it without seeing the full error. PLS HELP ME :(

    opened by Ghostkwebb 6
  • Crash when using RIFE ensemble models in vsmlrt

    Crash when using RIFE ensemble models in vsmlrt

    I get this error

    vapoursynth.Error: operator (): expects 8 input planes
    

    from this

    import vapoursynth as vs
    from vapoursynth import core
    core = vs.core
    import vsmlrt
    
    clip = core.lsmas.LWLibavSource(source=r"R:\output.mkv",cache=1, prefer_hw=1)
    clip = core.resize.Bicubic(clip, matrix_in_s="709", transfer_in_s='709', format=vs.RGBS)
    clip = vsmlrt.RIFE(clip, multi=4, model=46, backend=vsmlrt.Backend.TRT(fp16=True), tilesize=[1920,1088])
    clip = core.std.AssumeFPS(clip=clip, fpsnum=60, fpsden=1)
    clip = core.resize.Bicubic(clip, format=vs.RGB24, matrix_in_s="709")
    clip.set_output()
    
    opened by banjaminicc 4
  • Support for AITemplate?

    Support for AITemplate?

    There is something that came out recently and it's look promising in terms of performance/speed. Would it be possible to implement it for ESERGAN mode? https://github.com/facebookincubator/AITemplate

    opened by kodxana 4
  • CUDA out of Memory

    CUDA out of Memory

    System Specs: Ryzen 9 5900HX, NVidia 3070 Mobile, Arch Linux (EndeavorOS) on Kernel 5.17.2

    Whenever I try to run a model that is relying on CUDA, for example cugan, the program exits with

    Error: Failed to retrieve frame 0 with error: CUDA out of memory. Tried to allocate 148.00 MiB (GPU 0; 7.80 GiB total capacity; 5.53 GiB already allocated; 68.56 MiB free; 5.69 GiB reserved in total by PyTorch)

    and stops after having output 4 frames.

    However, TensorRT works fine for models that support it (like RealESRGAN for example).

    Edit: Running nvidia-smi while the command is executed reveals that vspipe is allocating GPU Memory, but <2 GiB of VRAM, far from the 8GiB my model has.

    opened by mmkzer0 4
  • No module named 'vsbasicvsrpp'

    No module named 'vsbasicvsrpp'

    Traceback (most recent call last): File "src\cython\vapoursynth.pyx", line 2832, in vapoursynth._vpy_evaluate File "src\cython\vapoursynth.pyx", line 2833, in vapoursynth._vpy_evaluate File "inference.py", line 12, in from vsbasicvsrpp import BasicVSRPP ModuleNotFoundError: No module named 'vsbasicvsrpp'

    opened by xt851231 4
  • Google colab request?

    Google colab request?

    I recently stumbled upon this VSGAN-tensorrt-docker and found it so incredible! Could anyone make a google colab notebook that features everything from this VSGAN-tensorrt-docker, so that we could experience the speed of TensorRT! Thanks in advance!

    opened by mikebilly 3
  • model conversion from onnx to trt

    model conversion from onnx to trt

    @styler00dollar this is not issue but a question, I read the scripts in inference.py and found real-esrgan 2x is loaded from trt engine file, since real-2x uses dynamic shapes as input, could you share any ideas how to convert this model to trt, thanks!

    opened by deism 3
  • ESRGAN with full episode

    ESRGAN with full episode

    Hello,

    I'm trying to upscale MKV files of full episodes with ESRGAN. I tried using vspipe -c y4m inference.py - | ffmpeg -i pipe: example.mkv, and it seems to run up to the point where it starts to give an ETA. Once there the time doesn't move and eventually, it says it was killed.

    Can you give me some tips on how to make this work better? I'm not familiar with most of the tools I've been given.

    opened by Ultramonte 2
  • [SUGGESTION] per-scene processing

    [SUGGESTION] per-scene processing

    Hi there, this project is awesome so thanks for your - voluntary - work !

    Since GANs-based processing is quite heavy computing task, it could be very useful to split it into multiple "segments" to allow parallel/scalable/collaborative/resumable instances.

    We suggest you to check @master-of-zen's Av1an framework, wich implements it.

    Hope that inspires.

    opened by forart 1
Releases(models)
Owner
I like Google Colab and Python.
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
Embeds a story into a music playlist by sorting the playlist so that the order of the music follows a narrative arc.

playlist-story-builder This project attempts to embed a story into a music playlist by sorting the playlist so that the order of the music follows a n

Dylan R. Ashley 0 Oct 28, 2021
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

4 Jun 20, 2021
Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 09, 2022
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! 🚀

Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow

Giorgos Karantonis 5 Aug 25, 2022
The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Likelihood-Free Inference in State-Space Models with Unknown Dynamics This package contains the codes required to run the experiments in the paper. Th

Alex Aushev 0 Dec 27, 2021
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project

Semantic Code Search Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project. The model

Chen Wu 24 Nov 29, 2022
Network Enhancement implementation in pytorch

network_enahncement_pytorch Network Enhancement implementation in pytorch Research paper Network Enhancement: a general method to denoise weighted bio

Yen 1 Nov 12, 2021
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
*ObjDetApp* deploys a pytorch model for object detection

*ObjDetApp* deploys a pytorch model for object detection

Will Chao 1 Dec 26, 2021
Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Duong H. Le 18 Jun 13, 2022
PyTorch implementation of EigenGAN

PyTorch Implementation of EigenGAN Train python train.py [image_folder_path] --name [experiment name] Test python test.py [ckpt path] --traverse FFH

62 Nov 12, 2022
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
Making Structure-from-Motion (COLMAP) more robust to symmetries and duplicated structures

SfM disambiguation with COLMAP About Structure-from-Motion generally fails when the scene exhibits symmetries and duplicated structures. In this repos

Computer Vision and Geometry Lab 193 Dec 26, 2022
A package related to building quasi-fibration symmetries

qf A package related to building quasi-fibration symmetries. If you'd like to learn more about how it works, see the brief explanation and References

Paolo Boldi 1 Dec 01, 2021
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
Official Repsoitory for "Activate or Not: Learning Customized Activation." [CVPR 2021]

CVPR 2021 | Activate or Not: Learning Customized Activation. This repository contains the official Pytorch implementation of the paper Activate or Not

184 Dec 27, 2022