Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Overview

Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Project Page | Paper

Yifan Peng*, Suyeon Choi*, Jonghyun Kim, Gordon Wetzstein

* Authors contributed equally.

This repository contains the scripts associated with the Science Advances paper "Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration"

Getting Started

First, load the submodules in neural_holography folder with

git submodule init
git submodule update

Also, you can modify the spectrum information in spectra folder based on measured spectrum from your own setup.

High-level structure

The code is organized as follows:

  • main.py generates phase patterns with our partially coherent propagatator via SGD/CITL
  • propagation_partial.py contains the partially coherent wave propagation operator implementation.
  • spectrum.py contains utility functions for reading measured spectra.

./neural-holography/: See here for descriptions.

Running the test

The SLM phase patterns can be reproduced with

SGD with the partially coherent model:

python main.py --channel=0 --method=SGD --prop_model=model --root_path=./phases

SGD with Camera-in-the-loop optimization:

python main.py --channel=0 --method=SGD --prop_model=model --citl=True --root_path=./phases

Citation

If you find our work useful in your research, please cite:

@article{Peng:2021:PartiallyCoherent,
author = {Yifan Peng  and Suyeon Choi  and Jonghyun Kim  and Gordon Wetzstein },
title = {Speckle-free holography with partially coherent light sources and camera-in-the-loop calibration},
journal = {Science Advances},
volume = {7},
number = {46},
pages = {eabg5040},
year = {2021},
doi = {10.1126/sciadv.abg5040}

License

This project is licensed under the following license, with exception of the file "data/1.png", which is licensed under the CC-BY license.

Copyright (c) 2021, Stanford University

All rights reserved.

Redistribution and use in source and binary forms for academic and other non-commercial purposes with or without modification, are permitted provided that the following conditions are met:

  • Redistributions of source code, including modified source code, must retain the above copyright notice, this list of conditions and the following disclaimer.

  • Redistributions in binary form or a modified form of the source code must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

  • Neither the name of The Leland Stanford Junior University, any of its trademarks, the names of its employees, nor contributors to the source code may be used to endorse or promote products derived from this software without specific prior written permission.

  • Where a modified version of the source code is redistributed publicly in source or binary forms, the modified source code must be published in a freely accessible manner, or otherwise redistributed at no charge to anyone requesting a copy of the modified source code, subject to the same terms as this agreement.

THIS SOFTWARE IS PROVIDED BY THE TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE LELAND STANFORD JUNIOR UNIVERSITY OR ITS TRUSTEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Contact

If you have any questions, please contact

Owner
Stanford Computational Imaging Lab
Next-generation computational imaging and display systems.
Stanford Computational Imaging Lab
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing Figure: Joint multi-attribute edits using DyStyle model. Great diversity

74 Dec 03, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

William Falcon 141 Dec 30, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
Semantic Segmentation Architectures Implemented in PyTorch

pytorch-semseg Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures i

Meet Shah 3.3k Dec 29, 2022
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022
This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021.

inverse_attention This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021. Le

Firas Laakom 5 Jul 08, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
Recurrent Conditional Query Learning

Recurrent Conditional Query Learning (RCQL) This repository contains the Pytorch implementation of One Model Packs Thousands of Items with Recurrent C

Dongda 4 Nov 28, 2022
A ssl analyzer which could analyzer target domain's certificate.

ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp

vincent 17 Dec 12, 2022
Robust Consistent Video Depth Estimation

[CVPR 2021] Robust Consistent Video Depth Estimation This repository contains Python and C++ implementation of Robust Consistent Video Depth, as descr

Facebook Research 213 Dec 17, 2022
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022