Joint Gaussian Graphical Model Estimation: A Survey

Overview

Joint Gaussian Graphical Model Estimation: A Survey

Test Models

  1. Fused graphical lasso [1]
  2. Group graphical lasso [1]
  3. Graphical lasso [1]
  4. Doubly joint spike-and-slab graphical lasso [2]

Installation

  1. Anaconda Environment package:
conda env create -f environment.yml
conda activate r_env2  #activate environment
  1. Install R packages
Rscript install_packages.R

Run Examples

Jupyter notebook

Saveral examples of data generation processes as well as sample codes are in the folder ./examples/jupyter_notebook

Plot ROC curve

Sample code for data generation process 1 (DGP1). The instruction for running DGP2_roc.r is the same.

cd examples/roc
### Generate simulated data, the result will be stored in ./data 
Rscript DGP1_roc.r DG [DATA DIMENSION]

### Select one of the refularization method FGL/GGL/GL. The result will be stored in ./results
Rscript DGP1_roc.r [ACTION: FGL/DGL/GL] [DATA DIMENSION]

###visualization
Rscript DGP1_roc_visualization.r
Other examples

Please check the structure tree below for more details.

Structure

├── examples
│   ├── jupyter_notebook
|   |   ├── simple_example_block.ipynb
|   |   ├── simple_example_scalefree.ipynb
|   |   ├── simple_example_ssjgl.ipynb
│   │   └── simple_example.ipynb
│   │
│   ├── roc # run & visualize ROC curve
|   |   ├── DGP1_roc_visualization.r #visualization|   ├── DGP1_roc.r # roc curve on scalefree network, common structures share same inverse convarince matrix (data generation process 1)
|   |   |                
|   |   ├── DGP2_roc_visualization.r #visualization
|   |   ├── DGP2_roc.r # roc curve on scalefree network, common structures have different inverse convarince matrices (data generation process 2)
|   |   |                    
|   |   ├── simple_roc_vis.r # visualization
|   |   └── simple_roc.r # roc curve on ramdom network
|   | 
|   ├── joint_demo.r # beautiful result on random network (Erdos-Renyi graph)            
│   ├── loss_graphsize_npAIC.r #fix p, vary n            
│   ├── loss_smallgraphsize.r #fix n, vary n             
│   ├── oos_scalefree.r # out-of-sample likelihood on scalefree network.              
│   ├── oos.r # out-of-sample likelihood on random network      
|   ├── scalefree_AIC.r # model selection on scalefree network using AIC, tune the trucation value                
|   ├── scalefree_BIC.r # model selection on scalefree network using BIC, tune the trucation value               
|   ├── simple_example_ar.r # example on AR network: model selction, fnr,fpr, Frobenious loss, etropy loss                      
|   └── simple_example_scalefree.r # example on scalefree network: model selction, fnr,fpr, Frobenious loss, etropy loss
|                          
├── R #source file
|   ├── admm.iters.R
|   ├── display.R
|   ├── eval.R
|   ├── gen_data.R
|   ├── gete.R
|   ├── JGL.R
|   ├── metrics.R
|   └── SSJGL.R
|   
├── environment.yml
├── install_packages.R
├── README.md
└── .gitignore

References

[1] Danaher, P., Wang, P., & Witten, D. M. (2014). The joint graphical lasso for inverse covariance estimation across multiple classes. Journal of the Royal Statistical Society. Series B, Statistical methodology, 76(2), 373.

[2] Zehang Richard Li, Tyler H. McCormick, and Samuel J. Clark. "Bayesian joint spike-and-slab graphical lasso". International Conference on Machine Learning, 2019.

Owner
Koyejo Lab
Koyejo Lab @ UIUC
Koyejo Lab
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022
Code Repository for The Kaggle Book, Published by Packt Publishing

The Kaggle Book Data analysis and machine learning for competitive data science Code Repository for The Kaggle Book, Published by Packt Publishing "Lu

Packt 1.6k Jan 07, 2023
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022
A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21

ANEMONE A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21 Dependencies python==3.6.1 dgl==

Graph Analysis & Deep Learning Laboratory, GRAND 30 Dec 14, 2022
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

52 Dec 30, 2022
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
MvtecAD unsupervised Anomaly Detection

MvtecAD unsupervised Anomaly Detection This respository is the unofficial implementations of DFR: Deep Feature Reconstruction for Unsupervised Anomaly

0 Feb 25, 2022
Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System

Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System The possibilities to involve

Babu Kumaran Nalini 0 Nov 19, 2021
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022