Joint Gaussian Graphical Model Estimation: A Survey

Overview

Joint Gaussian Graphical Model Estimation: A Survey

Test Models

  1. Fused graphical lasso [1]
  2. Group graphical lasso [1]
  3. Graphical lasso [1]
  4. Doubly joint spike-and-slab graphical lasso [2]

Installation

  1. Anaconda Environment package:
conda env create -f environment.yml
conda activate r_env2  #activate environment
  1. Install R packages
Rscript install_packages.R

Run Examples

Jupyter notebook

Saveral examples of data generation processes as well as sample codes are in the folder ./examples/jupyter_notebook

Plot ROC curve

Sample code for data generation process 1 (DGP1). The instruction for running DGP2_roc.r is the same.

cd examples/roc
### Generate simulated data, the result will be stored in ./data 
Rscript DGP1_roc.r DG [DATA DIMENSION]

### Select one of the refularization method FGL/GGL/GL. The result will be stored in ./results
Rscript DGP1_roc.r [ACTION: FGL/DGL/GL] [DATA DIMENSION]

###visualization
Rscript DGP1_roc_visualization.r
Other examples

Please check the structure tree below for more details.

Structure

├── examples
│   ├── jupyter_notebook
|   |   ├── simple_example_block.ipynb
|   |   ├── simple_example_scalefree.ipynb
|   |   ├── simple_example_ssjgl.ipynb
│   │   └── simple_example.ipynb
│   │
│   ├── roc # run & visualize ROC curve
|   |   ├── DGP1_roc_visualization.r #visualization|   ├── DGP1_roc.r # roc curve on scalefree network, common structures share same inverse convarince matrix (data generation process 1)
|   |   |                
|   |   ├── DGP2_roc_visualization.r #visualization
|   |   ├── DGP2_roc.r # roc curve on scalefree network, common structures have different inverse convarince matrices (data generation process 2)
|   |   |                    
|   |   ├── simple_roc_vis.r # visualization
|   |   └── simple_roc.r # roc curve on ramdom network
|   | 
|   ├── joint_demo.r # beautiful result on random network (Erdos-Renyi graph)            
│   ├── loss_graphsize_npAIC.r #fix p, vary n            
│   ├── loss_smallgraphsize.r #fix n, vary n             
│   ├── oos_scalefree.r # out-of-sample likelihood on scalefree network.              
│   ├── oos.r # out-of-sample likelihood on random network      
|   ├── scalefree_AIC.r # model selection on scalefree network using AIC, tune the trucation value                
|   ├── scalefree_BIC.r # model selection on scalefree network using BIC, tune the trucation value               
|   ├── simple_example_ar.r # example on AR network: model selction, fnr,fpr, Frobenious loss, etropy loss                      
|   └── simple_example_scalefree.r # example on scalefree network: model selction, fnr,fpr, Frobenious loss, etropy loss
|                          
├── R #source file
|   ├── admm.iters.R
|   ├── display.R
|   ├── eval.R
|   ├── gen_data.R
|   ├── gete.R
|   ├── JGL.R
|   ├── metrics.R
|   └── SSJGL.R
|   
├── environment.yml
├── install_packages.R
├── README.md
└── .gitignore

References

[1] Danaher, P., Wang, P., & Witten, D. M. (2014). The joint graphical lasso for inverse covariance estimation across multiple classes. Journal of the Royal Statistical Society. Series B, Statistical methodology, 76(2), 373.

[2] Zehang Richard Li, Tyler H. McCormick, and Samuel J. Clark. "Bayesian joint spike-and-slab graphical lasso". International Conference on Machine Learning, 2019.

Owner
Koyejo Lab
Koyejo Lab @ UIUC
Koyejo Lab
An open source Python package for plasma science that is under development

PlasmaPy PlasmaPy is an open source, community-developed Python 3.7+ package for plasma science. PlasmaPy intends to be for plasma science what Astrop

PlasmaPy 444 Jan 07, 2023
DNA-RECON { Automatic Web Reconnaissance Tool }

ABOUT TOOL : DNA-RECON is an automatic web reconnaissance tool written in python. This tool made for reconnaissance and information gathering with an

NIKUNJ BHATT 25 Aug 11, 2021
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
Neural Logic Inductive Learning

Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn

36 Nov 28, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for

Zhuang AI Group 105 Dec 06, 2022
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

536 Dec 20, 2022
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
Automatic deep learning for image classification.

AutoDL AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few line

wenqi 2 Oct 12, 2022
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes

Sungyong Baik 44 Dec 29, 2022
TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020)

TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020) About The goal of our research problem is illustrated below: give

59 Dec 09, 2022
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023
Pytorch code for our paper "Feedback Network for Image Super-Resolution" (CVPR2019)

Feedback Network for Image Super-Resolution [arXiv] [CVF] [Poster] Update: Our proposed Gated Multiple Feedback Network (GMFN) will appear in BMVC2019

Zhen Li 539 Jan 06, 2023
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022