Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

Overview

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral)

Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaesik Min, Kyoung Mu Lee

Official PyTorch implementation of Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral)

The code is based off the public code of MAML++, where their reimplementation of MAML is used as the baseline. The code also includes the implementation of ALFA.

[Paper-arXiv] [Video]

Requirements

Ubuntu 18.04

  • Anaconda3
  • Python==3.7.10
  • PyTorch==1.4
  • numpy==1.19.2

To install requirements, first download Anaconda3 and then run the following:

conda create -n metal python=3.7.10
conda activate metal
bash install.sh

Datasets

For miniIamgenet, the dataset can be downloaded from the link provided from MAML++ public code. make a directory named 'datasets' and place the downloaded miniImagnet under the 'datasets' directory.

Training

To train a model, run the following command in experiments_scripts directory

bash MeTAL.sh $GPU_ID

Evaluation

After training is finished, evaluation is performed automatically. To run an evaluation manually, run the same command

bash MeTAL.sh $GPU_ID

Results

Model Backbone 1-shot Accuracy 5-shot Accuracy
MAML 4-CONV 49.64 ± 0.31% 64.99 ± 0.27%
MeTAL 4-CONV 52.63 ± 0.37% 70.52 ± 0.29%
ALFA+MAML 4-CONV 50.58 ± 0.51% 69.12 ± 0.47%
ALFA+MeTAL 4-CONV 57.75 ± 0.38% 74.10 ± 0.43%
MAML ResNet12 58.60 ± 0.42% 69.54 ± 0.38%
MeTAL ResNet12 59.64 ± 0.38% 76.20 ± 0.19%
ALFA+MAML ResNet12 59.74 ± 0.49% 77.96 ± 0.41%
ALFA+MeTAL ResNet12 66.61 ± 0.28% 81.43 ± 0.29%

Reference

@InProceedings{baik2021meta,
 title={Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning},
 author={Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaesik Min, Kyoung Mu Lee}
 booktitle = {International Conference on Computer Vision (ICCV)}, 
 year={2021}
}
Owner
Sungyong Baik
Ph.D. Student in CVLab, SNU
Sungyong Baik
Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
Data for "Driving the Herd: Search Engines as Content Influencers" paper

herding_data Data for "Driving the Herd: Search Engines as Content Influencers" paper Dataset description The collection contains 2250 documents, 30 i

0 Aug 17, 2021
Curated list of awesome GAN applications and demo

gans-awesome-applications Curated list of awesome GAN applications and demonstrations. Note: General GAN papers targeting simple image generation such

Minchul Shin 4.5k Jan 07, 2023
Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

61 Jan 01, 2023
Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Stratified Transformer for 3D Point Cloud Segmentation Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

DV Lab 195 Jan 01, 2023
This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".

AS-MLP architecture for Image Classification Model Zoo Image Classification on ImageNet-1K Network Resolution Top-1 (%) Params FLOPs Throughput (image

SVIP Lab 106 Dec 12, 2022
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
PyTorch source code for Distilling Knowledge by Mimicking Features

LSHFM.detection This is the PyTorch source code for Distilling Knowledge by Mimicking Features. And this project contains code for object detection wi

Guo-Hua Wang 4 Dec 17, 2022
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022
Fang Zhonghao 13 Nov 19, 2022
PyTorch Implementation of Sparse DETR

Sparse DETR By Byungseok Roh*, Jaewoong Shin*, Wuhyun Shin*, and Saehoon Kim at Kakao Brain. (*: Equal contribution) This repository is an official im

Kakao Brain 113 Dec 28, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022