Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

Overview

CARLA-Roach

This is the official code release of the paper
End-to-End Urban Driving by Imitating a Reinforcement Learning Coach
by Zhejun Zhang, Alexander Liniger, Dengxin Dai, Fisher Yu and Luc van Gool, accepted at ICCV 2021.

It contains the code for benchmark, off-policy data collection, on-policy data collection, RL training and IL training with DAGGER. It also contains trained models of RL experts and IL agents. The supplementary videos can be found at the paper's homepage.

Installation

Please refer to INSTALL.md for installation. We use AWS EC2, but you can also install and run all experiments on your computer or cluster.

Quick Start: Collect an expert dataset using Roach

Roach is an end-to-end trained agent that drives better and more naturally than hand-crafted CARLA experts. To collect a dataset from Roach, use run/data_collect_bc.sh and modify the following arguments:

  • save_to_wandb: set to False if you don't want to upload the dataset to W&B.
  • dataset_root: local directory for saving the dataset.
  • test_suites: default is eu_data which collects data in Town01 for the NoCrash-dense benchmark. Available configurations are found here. You can also create your own configuration.
  • n_episodes: how many episodes to collect, each episode will be saved to a separate h5 file.
  • agent/cilrs/obs_configs: observation (i.e. sensor) configuration, default is central_rgb_wide. Available configurations are found here. You can also create your own configuration.
  • inject_noise: default is True. As introduced in CILRS, triangular noise is injected to steering and throttle such that the ego-vehicle does not always follow the lane center. Very useful for imitation learning.
  • actors.hero.terminal.kwargs.max_time: Maximum duration of an episode, in seconds.
  • Early stop the episode if traffic rule is violated, such that the collected dataset is error-free.
    • actors.hero.terminal.kwargs.no_collision: default is True.
    • actors.hero.terminal.kwargs.no_run_rl: default is False.
    • actors.hero.terminal.kwargs.no_run_stop: default is False.

Benchmark

To benchmark checkpoints, use run/benchmark.sh and modify the arguments to select different settings. We recommend g4dn.xlarge with 50 GB free disk space for video recording. Use screen if you want to run it in the background

screen -L -Logfile ~/screen.log -d -m run/benchmark.sh

Trained Models

The trained models are hosted here on W&B. Given the corresponding W&B run path, our code will automatically download and load the checkpoint with the configuration yaml file.

The following checkpoints are used to produce the results reported in our paper.

  • To benchmark the Autopilot, use benchmark() with agent="roaming".
  • To benchmark the RL experts, use benchmark() with agent="ppo" and set agent.ppo.wb_run_path to one of the following.
    • iccv21-roach/trained-models/1929isj0: Roach
    • iccv21-roach/trained-models/1ch63m76: PPO+beta
    • iccv21-roach/trained-models/10pscpih: PPO+exp
  • To benchmark the IL agents, use benchmark() with agent="cilrs" and set agent.cilrs.wb_run_path to one of the following.
    • Checkpoints trained for the NoCrash benchmark, at DAGGER iteration 5:
      • iccv21-roach/trained-models/39o1h862: L_A(AP)
      • iccv21-roach/trained-models/v5kqxe3i: L_A
      • iccv21-roach/trained-models/t3x557tv: L_K
      • iccv21-roach/trained-models/1w888p5d: L_K+L_V
      • iccv21-roach/trained-models/2tfhqohp: L_K+L_F
      • iccv21-roach/trained-models/3vudxj38: L_K+L_V+L_F
      • iccv21-roach/trained-models/31u9tki7: L_K+L_F(c)
      • iccv21-roach/trained-models/aovrm1fs: L_K+L_V+L_F(c)
    • Checkpoints trained for the LeaderBoard benchmark, at DAGGER iteration 5:
      • iccv21-roach/trained-models/1myvm4mw: L_A(AP)
      • iccv21-roach/trained-models/nw226h5h: L_A
      • iccv21-roach/trained-models/12uzu2lu: L_K
      • iccv21-roach/trained-models/3ar2gyqw: L_K+L_V
      • iccv21-roach/trained-models/9rcwt5fh: L_K+L_F
      • iccv21-roach/trained-models/2qq2rmr1: L_K+L_V+L_F
      • iccv21-roach/trained-models/zwadqx9z: L_K+L_F(c)
      • iccv21-roach/trained-models/21trg553: L_K+L_V+L_F(c)

Available Test Suites

Set argument test_suites to one of the following.

  • NoCrash-busy
    • eu_test_tt: NoCrash, busy traffic, train town & train weather
    • eu_test_tn: NoCrash, busy traffic, train town & new weather
    • eu_test_nt: NoCrash, busy traffic, new town & train weather
    • eu_test_nn: NoCrash, busy traffic, new town & new weather
    • eu_test: eu_test_tt/tn/nt/nn, all 4 conditions in one file
  • NoCrash-dense
    • nocrash_dense: NoCrash, dense traffic, all 4 conditions
  • LeaderBoard:
    • lb_test_tt: LeaderBoard, busy traffic, train town & train weather
    • lb_test_tn: LeaderBoard, busy traffic, train town & new weather
    • lb_test_nt: LeaderBoard, busy traffic, new town & train weather
    • lb_test_nn: LeaderBoard, busy traffic, new town & new weather
    • lb_test: lb_test_tt/tn/nt/nn all, 4 conditions in one file
  • LeaderBoard-all
    • cc_test: LeaderBoard, busy traffic, all 76 routes, dynamic weather

Collect Datasets

We recommend g4dn.xlarge for dataset collecting. Make sure you have enough disk space attached to the instance.

Collect Off-Policy Datasets

To collect off-policy datasets, use run/data_collect_bc.sh and modify the arguments to select different settings. You can use Roach (given a checkpoint) or the Autopilot to collect off-policy datasets. In our paper, before the DAGGER training the IL agents are initialized via behavior cloning (BC) using an off-policy dataset collected in this way.

Some arguments you may want to modify:

  • Set save_to_wandb=False if you don't want to upload the dataset to W&B.
  • Select the environment for collecting data by setting the argument test_suites to one of the following
    • eu_data: NoCrash, train town & train weather. We collect n_episodes=80 for BC dataset on NoCrash, that is around 75 GB and 6 hours of data.
    • lb_data: LeaderBoard, train town & train weather. We collect n_episodes=160 for BC dataset on LeaderBoard, that is around 150 GB and 12 hours of data.
    • cc_data: CARLA Challenge, all six maps (Town1-6), dynamic weather. We collect n_episodes=240 for BC dataset on CARLA Challenge, that is around 150 GB and 18 hours of data.
  • For RL experts, the used checkpoint is set via agent.ppo.wb_run_path and agent.ppo.wb_ckpt_step.
    • agent.ppo.wb_run_path is the W&B run path where the RL training is logged and the checkpoints are saved.
    • agent.ppo.wb_ckpt_step is the step of the checkpoint you want to use. If it's an integer, the script will find the checkpoint closest to that step. If it's null, the latest checkpoint will be used.

Collect On-Policy Datasets

To collect on-policy datasets, use run/data_collect_dagger.sh and modify the arguments to select different settings. You can use Roach or the Autopilot to label on-policy (DAGGER) datasets generated by an IL agent (given a checkpoint). This is done by running the data_collect.py using an IL agent as the driver, and Roach/Autopilot as the coach. So the expert supervisions are generated and recorded on the fly.

Most things are the same as collecting off-policy BC datasets. Here are some changes:

  • Set agent.cilrs.wb_run_path to the W&B run path where the IL training is logged and the checkpoints are saved.
  • By adjusting n_episodes we make sure the size of the DAGGER dataset at each iteration to be around 20% of the BC dataset size.
    • For RL experts we use an n_episodes which is the half of n_episodes of the BC dataset.
    • For the Autopilot we use an n_episodes which is the same as n_episodes of the BC dataset.

Train RL Experts

To train RL experts, use run/train_rl.sh and modify the arguments to select different settings. We recommend to use g4dn.4xlarge for training the RL experts, you will need around 50 GB free disk space for videos and checkpoints. We train RL experts on CARLA 0.9.10.1 because 0.9.11 crashes more often for unknown reasons.

Train IL Agents

To train IL agents, use run/train_il.sh and modify the arguments to select different settings. Training IL agents does not require CARLA and it's a GPU-heavy task. Therefore, we recommend to use AWS p-instances or your cluster to run the IL training. Our implementation follows DA-RB (paper, repo), which trains a CILRS (paper, repo) agent using DAGGER.

The training starts with training the basic CILRS via behavior cloning using an off-policy dataset.

  1. Collect off-policy DAGGER dataset.
  2. Train the IL model.
  3. Benchmark the trained model.

Then repeat the following DAGGER steps until the model achieves decent results.

  1. Collect on-policy DAGGER dataset.
  2. Train the IL model.
  3. Benchmark the trained model.

For the BC training,the following arguments have to be set.

  • Datasets
    • dagger_datasets: a vector of strings, for BC training it should only contain the path (local or W&B) to the BC dataset.
  • Measurement vector
    • agent.cilrs.env_wrapper.kwargs.input_states can be a subset of [speed,vec,cmd]
    • speed: scalar ego_vehicle speed
    • vec: 2D vector pointing to the next GNSS waypoint
    • cmd: one-hot vector of high-level command
  • Branching
    • For 6 branches:
      • agent.cilrs.policy.kwargs.number_of_branches=6
      • agent.cilrs.training.kwargs.branch_weights=[1.0,1.0,1.0,1.0,1.0,1.0]
    • For 1 branch:
      • agent.cilrs.policy.kwargs.number_of_branches=1
      • agent.cilrs.training.kwargs.branch_weights=[1.0]
  • Action Loss
    • L1 action loss
      • agent.cilrs.env_wrapper.kwargs.action_distribution=null
      • agent.cilrs.training.kwargs.action_kl=false
    • KL loss
      • agent.cilrs.env_wrapper.kwargs.action_distribution="beta_shared"
      • agent.cilrs.training.kwargs.action_kl=true
  • Value Loss
    • Disable
      • agent.cilrs.env_wrapper.kwargs.value_as_supervision=false
      • agent.cilrs.training.kwargs.value_weight=0.0
    • Enable
      • agent.cilrs.env_wrapper.kwargs.value_as_supervision=true
      • agent.cilrs.training.kwargs.value_weight=0.001
  • Pre-trained action/value head
    • agent.cilrs.rl_run_path and agent.cilrs.rl_ckpt_step are used to initialize the IL agent's action/value heads with Roach's action/value head.
  • Feature Loss
    • Disable
      • agent.cilrs.env_wrapper.kwargs.dim_features_supervision=0
      • agent.cilrs.training.kwargs.features_weight=0.0
    • Enable
      • agent.cilrs.env_wrapper.kwargs.dim_features_supervision=256
      • agent.cilrs.training.kwargs.features_weight=0.05

During the DAGGER training, a trained IL agent will be loaded and you cannot change the configuration any more. You will have to set

  • agent.cilrs.wb_run_path: the W&B run path where the previous IL training was logged and the checkpoints are saved.
  • agent.cilrs.wb_ckpt_step: the step of the checkpoint you want to use. Leave it as null will load the latest checkpoint.
  • dagger_datasets: vector of strings, W&B run path or local path to DAGGER datasets and the BC dataset in time-reversed order, for example [PATH_DAGGER_DATA_2, PATH_DAGGER_DATA_1, PATH_DAGGER_DATA_0, BC_DATA]
  • train_epochs: optionally you can change it if you want to train for more epochs.

Citation

Please cite our work if you found it useful:

@inproceedings{zhang2021roach,
  title = {End-to-End Urban Driving by Imitating a Reinforcement Learning Coach},
  booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  author = {Zhang, Zhejun and Liniger, Alexander and Dai, Dengxin and Yu, Fisher and Van Gool, Luc},
  year = {2021},
}

License

This software is released under a CC-BY-NC 4.0 license, which allows personal and research use only. For a commercial license, please contact the authors. You can view a license summary here.

Portions of source code taken from external sources are annotated with links to original files and their corresponding licenses.

Acknowledgements

This work was supported by Toyota Motor Europe and was carried out at the TRACE Lab at ETH Zurich (Toyota Research on Automated Cars in Europe - Zurich).

Owner
Zhejun Zhang
PhD Candidate at CVL, ETH Zurich
Zhejun Zhang
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
Nest Protect integration for Home Assistant. This will allow you to integrate your smoke, heat, co and occupancy status real-time in HA.

Nest Protect integration for Home Assistant Custom component for Home Assistant to interact with Nest Protect devices via an undocumented and unoffici

Mick Vleeshouwer 175 Dec 29, 2022
Code for ICML 2021 paper: How could Neural Networks understand Programs?

OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman

Dinglan Peng 115 Dec 17, 2022
VQGAN+CLIP Colab Notebook with user-friendly interface.

VQGAN+CLIP and other image generation system VQGAN+CLIP Colab Notebook with user-friendly interface. Latest Notebook: Mse regulized zquantize Notebook

Justin John 227 Jan 05, 2023
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Descript 150 Dec 06, 2022
Benchmarking Pipeline for Prediction of Protein-Protein Interactions

B4PPI Benchmarking Pipeline for the Prediction of Protein-Protein Interactions How this benchmarking pipeline has been built, and how to use it, is de

Loïc Lannelongue 4 Jun 27, 2022
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De

28 Dec 16, 2022
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte Computer Vision Lab

Kai Zhang 804 Jan 08, 2023
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022
Pytorch Implementation of Interaction Networks for Learning about Objects, Relations and Physics

Interaction-Network-Pytorch Pytorch Implementraion of Interaction Networks for Learning about Objects, Relations and Physics. Interaction Network is a

117 Nov 05, 2022
QilingLab challenge writeup

qiling lab writeup shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。 前情提要 Qiling 是一款功能強大的模擬框架,和 qemu user mode

Yuan 17 Nov 17, 2022
Large dataset storage format for Pytorch

H5Record Large dataset ( 100G, = 1T) storage format for Pytorch (wip) Support python 3 pip install h5record Why? Writing large dataset is still a

theblackcat102 43 Oct 22, 2022