MANO hand model porting for the GraspIt simulator

Overview

Learning Joint Reconstruction of Hands and Manipulated Objects - ManoGrasp

Porting the MANO hand model to GraspIt! simulator

Yana Hasson, Gül Varol, Dimitris Tzionas, Igor Kalevatykh, Michael J. Black, Ivan Laptev, Cordelia Schmid, CVPR 2019

Install

Setup ROS interface

This package uses a ROS interface for the GraspIt! simulator.

To install and setup this interface follow the instructions at https://github.com/graspit-simulator/graspit_interface.

Install package

git clone https://github.com/lwohlhart/mano_grasp.git
cd mano_grasp
python setup.py install --user --graspit_dir=$GRASPIT

Model

Model ManoHand will be automatically copied to $GRASPIT directory during the installation.

To copy a model without the code installation use the command:

python setup.py --copy_model_only --graspit_dir=$GRASPIT

Prepare objects

Make sure you have meshlab installed:

sudo apt install meshlab

To prepare object files (.obj, .stl, .ply, .off) for graspit:

python -m mano_grasp.prepare_objects --models_folder /PATH/TO/YOURDATASET/ --file_out YOURDATASET_objects.txt

Usually you want to apply some scaling to the objects to fit the hand, therefore append scales options:

--scales 1000

Use

python -m mano_grasp.prepare_objects --help

to see all available options.

Generate grasps

Start ROS master in one terminal:

roscore

Then in a second terminal start generator:

python -m mano_grasp.generate_grasps --models_file YOURDATASET_objects.txt --path_out PATH_TO_DATASET

Use

python -m mano_grasp.generate_grasps --help

to see all available options.

Citations

If you find this code useful for your research, consider citing:

@INPROCEEDINGS{hasson19_obman,
  title     = {Learning joint reconstruction of hands and manipulated objects},
  author    = {Hasson, Yana and Varol, G{\"u}l and Tzionas, Dimitris and Kalevatykh, Igor and Black, Michael J. and Laptev, Ivan and Schmid, Cordelia},
  booktitle = {CVPR},
  year      = {2019}
}
Owner
Lucas Wohlhart
#AI #ML #WebDev https://www.linkedin.com/in/lwohlhart Graz, Austria 🇪🇺
Lucas Wohlhart
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023
performing moving objects segmentation using image processing techniques with opencv and numpy

Moving Objects Segmentation On this project I tried to perform moving objects segmentation using background subtraction technique. the introduced meth

Mohamed Magdy 15 Dec 12, 2022
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Reinforcement Learning via Supervised Learning

Reinforcement Learning via Supervised Learning Installation Run pip install -e . in an environment with Python = 3.7.0, 3.9. The code depends on MuJ

Scott Emmons 49 Nov 28, 2022
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms Trying to publish a new machine learning model and can't write a decent title for your pa

264 Nov 08, 2022
Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Debabrata Mahapatra 40 Dec 24, 2022
A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

What Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun

Pliable Pixels 6 Jan 12, 2022
A new play-and-plug method of controlling an existing generative model with conditioning attributes and their compositions.

Viz-It Data Visualizer Web-Application If I ask you where most of the data wrangler looses their time ? It is Data Overview and EDA. Presenting "Viz-I

NVIDIA Research Projects 66 Jan 01, 2023
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
InterfaceGAN++: Exploring the limits of InterfaceGAN

InterfaceGAN++: Exploring the limits of InterfaceGAN Authors: Apavou Clément & Belkada Younes From left to right - Images generated using styleGAN and

Younes Belkada 42 Dec 23, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
A TensorFlow implementation of the Mnemonic Descent Method.

MDM A Tensorflow implementation of the Mnemonic Descent Method. Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment G.

123 Oct 07, 2022
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
Code for pre-training CharacterBERT models (as well as BERT models).

Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o

Hicham EL BOUKKOURI 31 Dec 05, 2022
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
Keep CALM and Improve Visual Feature Attribution

Keep CALM and Improve Visual Feature Attribution Jae Myung Kim1*, Junsuk Choe1*, Zeynep Akata2, Seong Joon Oh1† * Equal contribution † Corresponding a

NAVER AI 90 Dec 07, 2022
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022