A new play-and-plug method of controlling an existing generative model with conditioning attributes and their compositions.

Related tags

Deep LearningLACE
Overview

Controllable and Compositional Generation with Latent-Space Energy-Based Models

Python 3.8 pytorch 1.7.1 Torchdiffeq 0.2.1

Teaser image Teaser image

Official PyTorch implementation of the NeurIPS 2021 paper:
Controllable and Compositional Generation with Latent-Space Energy-Based Models
Weili Nie, Arash Vahdat, Anima Anandkumar
https://nvlabs.github.io/LACE

Abstract: Controllable generation is one of the key requirements for successful adoption of deep generative models in real-world applications, but it still remains as a great challenge. In particular, the compositional ability to generate novel concept combinations is out of reach for most current models. In this work, we use energy-based models (EBMs) to handle compositional generation over a set of attributes. To make them scalable to high-resolution image generation, we introduce an EBM in the latent space of a pre-trained generative model such as StyleGAN. We propose a novel EBM formulation representing the joint distribution of data and attributes together, and we show how sampling from it is formulated as solving an ordinary differential equation (ODE). Given a pre-trained generator, all we need for controllable generation is to train an attribute classifier. Sampling with ODEs is done efficiently in the latent space and is robust to hyperparameters. Thus, our method is simple, fast to train, and efficient to sample. Experimental results show that our method outperforms the state-of-the-art in both conditional sampling and sequential editing. In compositional generation, our method excels at zero-shot generation of unseen attribute combinations. Also, by composing energy functions with logical operators, this work is the first to achieve such compositionality in generating photo-realistic images of resolution 1024x1024.

Requirements

  • Linux and Windows are supported, but we recommend Linux for performance and compatibility reasons.
  • 1 high-end NVIDIA GPU with at least 24 GB of memory. We have done all testing and development using a single NVIDIA V100 GPU with memory size 32 GB.
  • 64-bit Python 3.8.
  • CUDA=10.0 and docker must be installed first.
  • Installation of the required library dependencies with Docker:
    docker build -f lace-cuda-10p0.Dockerfile --tag=lace-cuda-10-0:0.0.1 .
    docker run -it -d --gpus 0 --name lace --shm-size 8G -v $(pwd):/workspace -p 5001:6006 lace-cuda-10-0:0.0.1
    docker exec -it lace bash

Experiments on CIFAR-10

The CIFAR10 folder contains the codebase to get the main results on the CIFAR-10 dataset, where the scripts folder contains the necessary bash scripts to run the code.

Data preparation

Before running the code, you have to download the data (i.e., the latent code and label pairs) from here and unzip it to the CIFAR10 folder. Or you can go to the folder CIFAR10/prepare_data and follow the instructions to generate the data.

Training

To train the latent classifier, you can run:

bash scripts/run_clf.sh

In the script run_clf.sh, the variable x can be specified to w or z, representing that the latent classifier is trained in the w-space or z-space of StyleGAN, respectively.

Sampling

To get the conditional sampling results with the ODE or Langevin dynamics (LD) sampler, you can run:

# ODE
bash scripts/run_cond_ode_sample.sh

# LD
bash scripts/run_cond_ld_sample.sh

By default, we set x to w, meaning we use the w-space classifier, because we find our method works the best in w-space. You can change the value of x to z or i to use the classifier in z-space or pixel space, for a comparison.

To compute the conditional accuracy (ACC) and FID scores in conditional sampling with the ODE or LD sampler, you can run:

# ODE
bash scripts/run_cond_ode_score.sh

# LD
bash scripts/run_cond_ld_score.sh

Note that:

  1. For the ACC evaluation, you need a pre-trained image classifier, which can be downloaded as instructed here;

  2. For the FID evaluation, you need to have the FID reference statistics computed beforehand. You can go to the folder CIFAR10/prepare_data and follow the instructions to compute the FID reference statistics with real images sampled from CIFAR-10.

Experiments on FFHQ

The FFHQ folder contains the codebase for getting the main results on the FFHQ dataset, where the scripts folder contains the necessary bash scripts to run the code.

Data preparation

Before running the code, you have to download the data (i.e., 10k pairs of latent variables and labels) from here (originally from StyleFlow) and unzip it to the FFHQ folder.

Training

To train the latent classifier, you can run:

bash scripts/run_clf.sh

Note that each att_name (i.e., glasses) in run_clf.sh corresponds to a separate attribute classifier.

Sampling

First, you have to get the pre-trained StyleGAN2 (config-f) by following the instructions in Convert StyleGAN2 weight from official checkpoints.

Conditional sampling

To get the conditional sampling results with the ODE or LD sampler, you can run:

# ODE
bash scripts/run_cond_ode_sample.sh

# LD
bash scripts/run_cond_ld_sample.sh

To compute the conditional accuracy (ACC) and FID scores in conditional sampling with the ODE or LD sampler, you can run:

# ODE
bash scripts/run_cond_ode_score.sh

# LD
bash scripts/run_cond_ld_score.sh

Note that:

  1. For the ACC evaluation, you need to train an FFHQ image classifier, as instructed here;

  2. For the FID evaluation, you need to have the FID reference statistics computed beforehand. You can go to the folder FFHQ/prepare_models_data and follow the instructions to compute the FID reference statistics with the StyleGAN generated FFHQ images.

Sequential editing

To get the qualitative and quantitative results of sequential editing, you can run:

# User-specified sampling
bash scripts/run_seq_edit_sample.sh

# ACC and FID
bash scripts/run_seq_edit_score.sh

Note that:

  • Similarly, you first need to train an FFHQ image classifier and get the FID reference statics to compute ACC and FID score by following the instructions, respectively.

  • To get the face identity preservation (ID) score, you first need to download the pre-trained ArcFace network, which is publicly available here, to the folder FFHQ/pretrained/metrics.

Compositional Generation

To get the results of zero-shot generation on novel attribute combinations, you can run:

bash scripts/run_zero_shot.sh

To get the results of compositions of energy functions with logical operators, we run:

bash scripts/run_combine_energy.sh

Experiments on MetFaces

The MetFaces folder contains the codebase for getting the main results on the MetFaces dataset, where the scripts folder contains the necessary bash scripts to run the code.

Data preparation

Before running the code, you have to download the data (i.e., 10k pairs of latent variables and labels) from here and unzip it to the MetFaces folder. Or you can go to the folder MetFaces/prepare_data and follow the instructions to generate the data.

Training

To train the latent classifier, you can run:

bash scripts/run_clf.sh

Note that each att_name (i.e., yaw) in run_clf.sh corresponds to a separate attribute classifier.

Sampling

To get the conditional sampling and sequential editing results, you can run:

# conditional sampling
bash scripts/run_cond_sample.sh

# sequential editing
bash scripts/run_seq_edit_sample.sh

Experiments on AFHQ-Cats

The AFHQ folder contains the codebase for getting the main results on the AFHQ-Cats dataset, where the scripts folder contains the necessary bash scripts to run the code.

Data preparation

Before running the code, you have to download the data (i.e., 10k pairs of latent variables and labels) from here and unzip it to the AFHQ folder. Or you can go to the folder AFHQ/prepare_data and follow the instructions to generate the data.

Training

To train the latent classifier, you can run:

bash scripts/run_clf.sh

Note that each att_name (i.e., breeds) in run_clf.sh corresponds to a separate attribute classifier.

Sampling

To get the conditional sampling and sequential editing results, you can run:

# conditional sampling
bash scripts/run_cond_sample.sh

# sequential editing
bash scripts/run_seq_edit_sample.sh

License

Please check the LICENSE file. This work may be used non-commercially, meaning for research or evaluation purposes only. For business inquiries, please contact [email protected].

Citation

Please cite our paper, if you happen to use this codebase:

@inproceedings{nie2021controllable,
  title={Controllable and compositional generation with latent-space energy-based models},
  author={Nie, Weili and Vahdat, Arash and Anandkumar, Anima},
  booktitle={Neural Information Processing Systems (NeurIPS)},
  year={2021}
}
Owner
NVIDIA Research Projects
NVIDIA Research Projects
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
A Machine Teaching Framework for Scalable Recognition

MEMORABLE This repository contains the source code accompanying our ICCV 2021 paper. A Machine Teaching Framework for Scalable Recognition Pei Wang, N

2 Dec 08, 2021
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
Turning SymPy expressions into JAX functions

sympy2jax Turn SymPy expressions into parametrized, differentiable, vectorizable, JAX functions. All SymPy floats become trainable input parameters. S

Miles Cranmer 38 Dec 11, 2022
Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide.

SARS-CoV-2 processing requests Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide. Prerequisites This autom

useGalaxy.eu 17 Aug 13, 2022
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state.

This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state. Dependencies Account wi

Balamurugan Soundararaj 21 Dec 14, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021)

3DDUNET This is the code for 3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021) Conference Paper Link Dataset We use SMOID dataset

1 Jan 07, 2022
Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023