Face Library is an open source package for accurate and real-time face detection and recognition

Related tags

Deep Learningface_lib
Overview

Face Library

Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and using famous models and algorithms for face detection and recognition tasks. Make face detection and recognition with only one line of code. The Library doesn't use heavy frameworks like TensorFlow, Keras and PyTorch so it makes it perfect for production.

Installation

pip install face-library

Usage

Importing

from face_lib import face_lib
FL = face_lib()

The model is built over OpenCV, so it expects cv2 input (i.e. BGR image), it will support PIL in the next version for RGB inputs. At the end there is a piece of code to make PIL image like cv2 image.

Face detection

import cv2

img = cv2.imread(path_to_image)
faces = FL.get_faces(img) #return list of RGB faces image

If you want to get faces locations (coordinates) instead of the faces from the image you can use

no_of_faces, faces_coors = FL.faces_locations(face_img)

Face verfication

img_to_verfiy = cv2.imread(path_to_image_to_verify) #image that contain face you want verify
gt_img = cv2.imread(path_to_image_to_compare) #image of the face to compare with

face_exist, no_faces_detected = FL.recognition_pipeline(img_to_verfiy, gt_image)

You can change the threshold of verfication with the best for your usage or dataset like this :

face_exist, no_faces_detected = FL.recognition_pipeline(img_to_verfiy, gt_image, threshold = 1.1) #default number is 0.92

also if you know that gt_img has only one face and the image is zoomed to that face like this :

You can save computing time and the make the model more faster by using

face_exist, no_faces_detected = FL.recognition_pipeline(img_to_verfiy, gt_image, only_face_gt = True)

Extracting face embeddings

I you want represent the face with vector from face only image, you can use

face_embeddings = FL.face_embeddings(face_only_image)

For PIL images

import cv2
import numpy
from PIL import Image

PIL_img = Image.open(path_to_image)

cv2_img = cv2.cvtColor(numpy.array(PIL_img), cv2.COLOR_RGB2BGR) #now you can use this to be input for face_lib functions

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Support

There are many ways to support a project - starring ⭐️ the GitHub repo is just one.

Licence

Face library is licensed under the MIT License

You might also like...
A real-time speech emotion recognition application using Scikit-learn and gradio
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and build their own methods.

A large-scale face dataset for face parsing, recognition, generation and editing.
A large-scale face dataset for face parsing, recognition, generation and editing.

CelebAMask-HQ [Paper] [Demo] CelebAMask-HQ is a large-scale face image dataset that has 30,000 high-resolution face images selected from the CelebA da

DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

High accurate tool for automatic faces detection with landmarks
High accurate tool for automatic faces detection with landmarks

faces_detanator High accurate tool for automatic faces detection with landmarks. The library is based on public detectors with high accuracy (TinaFace

Comments
  • Face Recognition model corrupted

    Face Recognition model corrupted

    While running the script it says tat "face rcognition model corrupted" and starts to download the model. But it takes too long to download 90 mb file.

    help wanted 
    opened by qnihat 4
  • import issue

    import issue

    This might be a noob python question, but:

    git clone https://github.com/a-akram-98/face_lib.git cd face_lib/ virtualenv -p /usr/bin/python3 venv source venv/bin/activate pip install face-library ...

    (venv) [email protected]:src (master)$ python Python 3.6.9 (default, Jan 26 2021, 15:33:00) [GCC 8.4.0] on linux Type "help", "copyright", "credits" or "license" for more information.

    from face_lib import face_lib Traceback (most recent call last): File "", line 1, in File "/home/jim/source/face_lib/src/face_lib/init.py", line 1, in from .face_lib import face_lib File "/home/jim/source/face_lib/src/face_lib/face_lib.py", line 5, in from .BlazeDetector import BlazeFaceDetector File "/home/jim/source/face_lib/src/face_lib/BlazeDetector.py", line 5, in from blazeFaceUtils import gen_anchors, AnchorsOptions ModuleNotFoundError: No module named 'blazeFaceUtils'

    How do I find the modules?

    bug good first issue 
    opened by jvanvorst 2
  • Issue with size of the image

    Issue with size of the image

    I saw that with big image 958x1280 it gave an opencv error! so 9i made a small function to resize it to 500 on the height:

    `from face_lib import face_lib import cv2 import os FL = face_lib()

    maxsize = int(500) #maximum height in pixel to get an opencv error file = "./sacha.jpg" filename, file_extension = os.path.splitext(os.path.basename(file))

    def checksize(file): print("in") if not os.path.isfile(file): print("error file not found") exit(1) #get the filename and extensionof filepath img = cv2.imread(file) #Get the width and Heigth of filepath height, width, channels = img.shape #Get the correction factor if the image is to big if height > maxsize: factor = float(maxsize/height) print(factor) height = round(int(height) * factor) width = round(int(width) * factor) #Resize the image img = cv2.resize(img,(width, height)) return img

    img = checksize(file) no_of_faces, faces_locations = FL.faces_locations(img) x,y,w,h = faces_locations[0] cv2.rectangle(img, (x,y),(x+w,y+h), (255,0,0),2) cv2.imshow(filename, img) cv2.waitKey(0)`

    that can help anyone

    opened by sachadee 0
Releases(v1.0.5)
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 09, 2023
A Topic Modeling toolbox

Topik A Topic Modeling toolbox. Introduction The aim of topik is to provide a full suite and high-level interface for anyone interested in applying to

Anaconda, Inc. (formerly Continuum Analytics, Inc.) 93 Dec 01, 2022
Basit bir burç modülü.

Bu modulu burclar hakkinda gundelik bir sekilde bilgi alin diye yaptim ve sizler icin kullanima sunuyorum. Modulun kullanimi asiri basit: Ornek Kullan

Special 17 Jun 08, 2022
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)

Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age

Future Power Networks 83 Jan 06, 2023
NBEATSx: Neural basis expansion analysis with exogenous variables

NBEATSx: Neural basis expansion analysis with exogenous variables We extend the NBEATS model to incorporate exogenous factors. The resulting method, c

Cristian Challu 100 Dec 31, 2022
This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch.

MPDL---TODO This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch. Ci

CodebaseLi 3 Nov 27, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 73 Dec 24, 2022
InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Men

Hong Wang 4 Dec 27, 2022
Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021

Joint Learning of 3D Shape Retrieval and Deformation Joint Learning of 3D Shape Retrieval and Deformation Mikaela Angelina Uy, Vladimir G. Kim, Minhyu

Mikaela Uy 38 Oct 18, 2022
Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image This repository is an implementation of the method described in the following pap

21 Dec 15, 2022