Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021

Overview

Joint Learning of 3D Shape Retrieval and Deformation

Joint Learning of 3D Shape Retrieval and Deformation

Mikaela Angelina Uy, Vladimir G. Kim, Minhyuk Sung, Noam Aigerman, Siddhartha Chaudhuri and Leonidas Guibas

CVPR 2021

pic-network

Introduction

We propose a novel technique for producing high-quality 3D models that match a given target object image or scan. Our method is based on retrieving an existing shape from a database of 3D models and then deforming its parts to match the target shape. Unlike previous approaches that independently focus on either shape retrieval or deformation, we propose a joint learning procedure that simultaneously trains the neural deformation module along with the embedding space used by the retrieval module. This enables our network to learn a deformation-aware embedding space, so that retrieved models are more amenable to match the target after an appropriate deformation. In fact, we use the embedding space to guide the shape pairs used to train the deformation module, so that it invests its capacity in learning deformations between meaningful shape pairs. Furthermore, our novel part-aware deformation module can work with inconsistent and diverse part structures on the source shapes. We demonstrate the benefits of our joint training not only on our novel framework, but also on other state-of-the-art neural deformation modules proposed in recent years. Lastly, we also show that our jointly-trained method outperforms various non-joint baselines. Our project page can be found here, and the arXiv version of our paper can be found here.

@inproceedings{uy-joint-cvpr21,
      title = {Joint Learning of 3D Shape Retrieval and Deformation},
      author = {Mikaela Angelina Uy and Vladimir G. Kim and Minhyuk Sung and Noam Aigerman and Siddhartha Chaudhuri and Leonidas Guibas},
      booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
      year = {2021}
  }

Data download and preprocessing details

Dataset downloads can be found in the links below. These should be extracted in the project home folder.

  1. Raw source shapes are here.

  2. Processed h5 and pickle files are here.

  3. Targets:

    • [Optional] (already processed in h5) point cloud
    • Images: chair, table, cabinet. You also need to modify the correct path for IMAGE_BASE_DIR in the image training and evaluation scripts.
  4. Automatic segmentation (ComplementMe)

    • Source shapes are here.
    • Processed h5 and pickle files are here.

For more details on the pre-processing scripts, please take a look at run_preprocessing.py and generate_combined_h5.py. run_preprocessing.py includes the details on how the connectivity constraints and projection matrices are defined. We use the keypoint_based constraint to define our source model constraints in the paper.

The renderer used throughout the project can be found here. Please modify the paths, including the input and output directories, accordingly at global_variables.py if you want to process your own data.

Pre-trained Models

The pretrained models for Ours and Ours w/ IDO, which uses our joint training approach can be found here. We also included the pretrained models of our structure-aware deformation-only network, which are trained on random source-target pairs used to initialize our joint training.

Evaluation

Example commands to run the evaluation script are as follows. The flags can be changed as desired. --mesh_visu renders the output results into images, remove the flag to disable the rendering. Note that --category is the object category and the values should be set to "chair", "table", "storagefurniture" for classes chair, table and cabinet, respectively.

For point clouds:

python evaluate.py --logdir=ours_ido_pc_chair/ --dump_dir=dump_ours_ido_pc_chair/ --joint_model=1 --use_connectivity=1 --use_src_encoder_retrieval=1 --category=chair --use_keypoint=1 --mesh_visu=1

python evaluate_recall.py --logdir=ours_ido_pc_chair/ --dump_dir=dump_ours_ido_pc_chair/ --category=chair

For images:

python evaluate_images.py --logdir=ours_ido_img_chair/ --dump_dir=dump_ours_ido_img_chair/ --joint_model=1 --use_connectivity=1 --category=chair --use_src_encoder_retrieval=1 --use_keypoint=1 --mesh_visu=1

python evaluate_images_recall.py --logdir=ours_ido_img_chair/ --dump_dir=dump_ours_ido_img_chair/ --category=chair

Training

  • To train deformation-only networks on random source-target pairs, example commands are as follows:
# For point clouds
python train_deformation_final.py --logdir=log/ --dump_dir=dump/ --to_train=1 --use_connectivity=1 --category=chair --use_keypoint=1 --use_symmetry=1

# For images
python train_deformation_images.py --logdir=log/ --dump_dir=dump/ --to_train=1 --use_connectivity=1 --category=storagefurniture --use_keypoint=1 --use_symmetry=1
  • To train our joint models without IDO (Ours), example commands are as follows:
# For point clouds
python train_region_final.py --logdir=log/ --dump_dir=dump/ --to_train=1 --init_deformation=1 --loss_function=regression --distance_function=mahalanobis --use_connectivity=1 --use_src_encoder_retrieval=1 --category=chair --model_init=df_chair_pc/ --selection=retrieval_candidates --use_keypoint=1 --use_symmetry=1

# For images
python train_region_images.py --logdir=log/ --dump_dir=dump/ --to_train=1 --use_connectivity=1 --selection=retrieval_candidates --use_src_encoder_retrieval=1 --category=chair --use_keypoint=1 --use_symmetry=1 --init_deformation=1 --model_init=df_chair_img/
  • To train our joint models with IDO (Ours w/ IDO), example commands are as follows:
# For point clouds
python joint_with_icp.py --logdir=log/ --dump_dir=dump/ --to_train=1 --loss_function=regression --distance_function=mahalanobis --use_connectivity=1 --use_src_encoder_retrieval=1 --category=chair --model_init=df_chair_pc/ --selection=retrieval_candidates --use_keypoint=1 --use_symmetry=1 --init_deformation=1 --use_icp_pp=1 --fitting_loss=l2

# For images
python joint_icp_images.py --logdir=log/ --dump_dir=dump/ --to_train=1 --init_joint=1 --loss_function=regression --distance_function=mahalanobis --use_connectivity=1 --use_src_encoder_retrieval=1 --category=chair --model_init=df_chair_img/ --selection=retrieval_candidates --use_keypoint=1 --use_symmetry=1 --init_deformation=1 --use_icp_pp=1 --fitting_loss=l2

Note that our joint training approach is used by setting the flag --selection=retrieval_candidates=1.

Related Work

This work and codebase is related to the following previous work:

License

This repository is released under MIT License (see LICENSE file for details).

Owner
Mikaela Uy
CS PhD Student
Mikaela Uy
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

Shihua Huang 23 Jul 22, 2022
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi

Nicolas Audebert 447 Jan 05, 2023
dyld_shared_cache processing / Single-Image loading for BinaryNinja

Dyld Shared Cache Parser Author: cynder (kat) Dyld Shared Cache Support for BinaryNinja Without any of the fuss of requiring manually loading several

cynder 76 Dec 28, 2022
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Ruixu Geng(耿瑞旭) 16 Dec 16, 2022
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator

ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an

Microsoft 8k Jan 04, 2023
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning

LABES This is the code for EMNLP 2020 paper "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised L

17 Sep 28, 2022
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022
The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

ArXiv | Get Start Neural-Texture-Extraction-Distribution The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Cont

Ren Yurui 111 Dec 10, 2022