Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021

Overview

Joint Learning of 3D Shape Retrieval and Deformation

Joint Learning of 3D Shape Retrieval and Deformation

Mikaela Angelina Uy, Vladimir G. Kim, Minhyuk Sung, Noam Aigerman, Siddhartha Chaudhuri and Leonidas Guibas

CVPR 2021

pic-network

Introduction

We propose a novel technique for producing high-quality 3D models that match a given target object image or scan. Our method is based on retrieving an existing shape from a database of 3D models and then deforming its parts to match the target shape. Unlike previous approaches that independently focus on either shape retrieval or deformation, we propose a joint learning procedure that simultaneously trains the neural deformation module along with the embedding space used by the retrieval module. This enables our network to learn a deformation-aware embedding space, so that retrieved models are more amenable to match the target after an appropriate deformation. In fact, we use the embedding space to guide the shape pairs used to train the deformation module, so that it invests its capacity in learning deformations between meaningful shape pairs. Furthermore, our novel part-aware deformation module can work with inconsistent and diverse part structures on the source shapes. We demonstrate the benefits of our joint training not only on our novel framework, but also on other state-of-the-art neural deformation modules proposed in recent years. Lastly, we also show that our jointly-trained method outperforms various non-joint baselines. Our project page can be found here, and the arXiv version of our paper can be found here.

@inproceedings{uy-joint-cvpr21,
      title = {Joint Learning of 3D Shape Retrieval and Deformation},
      author = {Mikaela Angelina Uy and Vladimir G. Kim and Minhyuk Sung and Noam Aigerman and Siddhartha Chaudhuri and Leonidas Guibas},
      booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
      year = {2021}
  }

Data download and preprocessing details

Dataset downloads can be found in the links below. These should be extracted in the project home folder.

  1. Raw source shapes are here.

  2. Processed h5 and pickle files are here.

  3. Targets:

    • [Optional] (already processed in h5) point cloud
    • Images: chair, table, cabinet. You also need to modify the correct path for IMAGE_BASE_DIR in the image training and evaluation scripts.
  4. Automatic segmentation (ComplementMe)

    • Source shapes are here.
    • Processed h5 and pickle files are here.

For more details on the pre-processing scripts, please take a look at run_preprocessing.py and generate_combined_h5.py. run_preprocessing.py includes the details on how the connectivity constraints and projection matrices are defined. We use the keypoint_based constraint to define our source model constraints in the paper.

The renderer used throughout the project can be found here. Please modify the paths, including the input and output directories, accordingly at global_variables.py if you want to process your own data.

Pre-trained Models

The pretrained models for Ours and Ours w/ IDO, which uses our joint training approach can be found here. We also included the pretrained models of our structure-aware deformation-only network, which are trained on random source-target pairs used to initialize our joint training.

Evaluation

Example commands to run the evaluation script are as follows. The flags can be changed as desired. --mesh_visu renders the output results into images, remove the flag to disable the rendering. Note that --category is the object category and the values should be set to "chair", "table", "storagefurniture" for classes chair, table and cabinet, respectively.

For point clouds:

python evaluate.py --logdir=ours_ido_pc_chair/ --dump_dir=dump_ours_ido_pc_chair/ --joint_model=1 --use_connectivity=1 --use_src_encoder_retrieval=1 --category=chair --use_keypoint=1 --mesh_visu=1

python evaluate_recall.py --logdir=ours_ido_pc_chair/ --dump_dir=dump_ours_ido_pc_chair/ --category=chair

For images:

python evaluate_images.py --logdir=ours_ido_img_chair/ --dump_dir=dump_ours_ido_img_chair/ --joint_model=1 --use_connectivity=1 --category=chair --use_src_encoder_retrieval=1 --use_keypoint=1 --mesh_visu=1

python evaluate_images_recall.py --logdir=ours_ido_img_chair/ --dump_dir=dump_ours_ido_img_chair/ --category=chair

Training

  • To train deformation-only networks on random source-target pairs, example commands are as follows:
# For point clouds
python train_deformation_final.py --logdir=log/ --dump_dir=dump/ --to_train=1 --use_connectivity=1 --category=chair --use_keypoint=1 --use_symmetry=1

# For images
python train_deformation_images.py --logdir=log/ --dump_dir=dump/ --to_train=1 --use_connectivity=1 --category=storagefurniture --use_keypoint=1 --use_symmetry=1
  • To train our joint models without IDO (Ours), example commands are as follows:
# For point clouds
python train_region_final.py --logdir=log/ --dump_dir=dump/ --to_train=1 --init_deformation=1 --loss_function=regression --distance_function=mahalanobis --use_connectivity=1 --use_src_encoder_retrieval=1 --category=chair --model_init=df_chair_pc/ --selection=retrieval_candidates --use_keypoint=1 --use_symmetry=1

# For images
python train_region_images.py --logdir=log/ --dump_dir=dump/ --to_train=1 --use_connectivity=1 --selection=retrieval_candidates --use_src_encoder_retrieval=1 --category=chair --use_keypoint=1 --use_symmetry=1 --init_deformation=1 --model_init=df_chair_img/
  • To train our joint models with IDO (Ours w/ IDO), example commands are as follows:
# For point clouds
python joint_with_icp.py --logdir=log/ --dump_dir=dump/ --to_train=1 --loss_function=regression --distance_function=mahalanobis --use_connectivity=1 --use_src_encoder_retrieval=1 --category=chair --model_init=df_chair_pc/ --selection=retrieval_candidates --use_keypoint=1 --use_symmetry=1 --init_deformation=1 --use_icp_pp=1 --fitting_loss=l2

# For images
python joint_icp_images.py --logdir=log/ --dump_dir=dump/ --to_train=1 --init_joint=1 --loss_function=regression --distance_function=mahalanobis --use_connectivity=1 --use_src_encoder_retrieval=1 --category=chair --model_init=df_chair_img/ --selection=retrieval_candidates --use_keypoint=1 --use_symmetry=1 --init_deformation=1 --use_icp_pp=1 --fitting_loss=l2

Note that our joint training approach is used by setting the flag --selection=retrieval_candidates=1.

Related Work

This work and codebase is related to the following previous work:

License

This repository is released under MIT License (see LICENSE file for details).

Owner
Mikaela Uy
CS PhD Student
Mikaela Uy
This app is a simple example of using Strealit to create a financial data web app.

Streamlit Demo: Finance Chart This app is a simple example of using Streamlit to create a financial data web app. This demo use streamlit, pandas and

91 Jan 02, 2023
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
QueryFuzz implements a metamorphic testing approach to test Datalog engines.

Datalog is a popular query language with applications in several domains. Like any complex piece of software, Datalog engines may contain bugs. The mo

34 Sep 10, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
Unofficial Implementation of MLP-Mixer, Image Classification Model

MLP-Mixer Unoffical Implementation of MLP-Mixer, easy to use with terminal. Train and test easly. https://arxiv.org/abs/2105.01601 MLP-Mixer is an arc

Oğuzhan Ercan 6 Dec 05, 2022
基于tensorflow 2.x的图片识别工具集

Classification.tf2 基于tensorflow 2.x的图片识别工具集 功能 粗粒度场景图片分类 细粒度场景图片分类 其他场景图片分类 模型部署 tensorflow serving本地推理和docker部署 tensorRT onnx ... 数据集 https://hyper.a

Wei Qi 1 Nov 03, 2021
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
Code for Paper: Self-supervised Learning of Motion Capture

Self-supervised Learning of Motion Capture This is code for the paper: Hsiao-Yu Fish Tung, Hsiao-Wei Tung, Ersin Yumer, Katerina Fragkiadaki, Self-sup

Hsiao-Yu Fish Tung 87 Jul 25, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023
A package for "Procedural Content Generation via Reinforcement Learning" OpenAI Gym interface.

Readme: Illuminating Diverse Neural Cellular Automata for Level Generation This is the codebase used to generate the results presented in the paper av

Sam Earle 27 Jan 05, 2023
CCP dataset from Clothing Co-Parsing by Joint Image Segmentation and Labeling

Clothing Co-Parsing (CCP) Dataset Clothing Co-Parsing (CCP) dataset is a new clothing database including elaborately annotated clothing items. 2, 098

Wei Yang 434 Dec 24, 2022
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022