dyld_shared_cache processing / Single-Image loading for BinaryNinja

Overview

Dyld Shared Cache Parser

Author: cynder (kat)

Dyld Shared Cache Support for BinaryNinja

BinaryNinja Screenshot

BinaryNinja Screenshot

Without any of the fuss of requiring manually loading several unrelated images, or the awful off-image addresses, and with better output than IDA, Hopper, or any other disassembler on the market.

Installation + Usage

  1. Open the plugin manager
  2. Search for "Dyld" and install this plugin

Usage:

  1. Open Dyld Shared Cache file with BN
  2. Select the Image you would like to disassemble
  3. Congrats, you are now Reverse Engineering the Mach-O

Description:

This project acts as an interface for two seperate projects; DyldExtractor, and ktool. Mainly DyldExtractor.

DyldExtractor is a project written primarily by 'arandomdev' designed for CLI standalone dyld_shared_cache extraction. It is the best tool for the job, and reverses the majority of "optimizations" that make DSC reverse engineering ugly and painful. Utilizing this plugin, Binja's processing should outperform IDAs, and wont require IDA's need for repeatedly right clicking and manually loading tons of modules.

This version of DyldExtractor has a lot of modifications (read: a lot of commented out lines) from the original designed to make it function better in the binja environment.

ktool is a multifaceted project I wrote for, primarily, MachO + ObjC Parsing.

It is mainly used for super basic parsing of the output, as we need to properly write the segments to the VM (and scrap all the dsc data that was originally in this file) so the Mach-O View knows how to parse it.

License

This plugin, along with ktool and dyldextractor are released under an MIT license. Both of these plugins are vendored within this project to make installation slightly simpler.

You might also like...
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Learning to Reconstruct 3D Manhattan Wireframes from a Single Image
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image This repository contains the PyTorch implementation of the paper: Yichao Zhou, Hao

Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

This is the official repository for evaluation on the NoW Benchmark Dataset. The goal of the NoW benchmark is to introduce a standard evaluation metric to measure the accuracy and robustness of 3D face reconstruction methods from a single image under variations in viewing angle, lighting, and common occlusions. Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

Code for generating a single image pretraining dataset
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Comments
  • TypeError: cannot unpack non-iterable NoneType object

    TypeError: cannot unpack non-iterable NoneType object

    Tried this just now, and got this, trying to extract the macOS 13.1 x86_64h cache:

    Successfully installed: Dyld Shared Cache Processor
    Loaded python3 plugin 'cxnder_bndyldsharedcache'
    Traceback (most recent call last):
      File "/Applications/Binary Ninja.app/Contents/MacOS/plugins/../../Resources/python/binaryninja/binaryview.py", line 2818, in _init
        return self.init()
      File "/Users/torarne/Library/Application Support/Binary Ninja/repositories/community/plugins/cxnder_bndyldsharedcache/dsc.py", line 101, in init
        stub_fixer.fixStubs(extraction_ctx)
      File "/Users/torarne/Library/Application Support/Binary Ninja/repositories/community/plugins/cxnder_bndyldsharedcache/DyldExtractor/converter/stub_fixer.py", line 1681, in fixStubs
        _StubFixer(extractionCtx).run()
      File "/Users/torarne/Library/Application Support/Binary Ninja/repositories/community/plugins/cxnder_bndyldsharedcache/DyldExtractor/converter/stub_fixer.py", line 1011, in run
        self._symbolizer = _Symbolizer(self._extractionCtx)
      File "/Users/torarne/Library/Application Support/Binary Ninja/repositories/community/plugins/cxnder_bndyldsharedcache/DyldExtractor/converter/stub_fixer.py", line 59, in __init__
        self._enumerateExports()
      File "/Users/torarne/Library/Application Support/Binary Ninja/repositories/community/plugins/cxnder_bndyldsharedcache/DyldExtractor/converter/stub_fixer.py", line 101, in _enumerateExports
        if depInfo := self._getDepInfo(dylib, self._machoCtx):
      File "/Users/torarne/Library/Application Support/Binary Ninja/repositories/community/plugins/cxnder_bndyldsharedcache/DyldExtractor/converter/stub_fixer.py", line 179, in _getDepInfo
        imageOff, dyldCtx = self._dyldCtx.convertAddr(imageAddr)
    TypeError: cannot unpack non-iterable NoneType object
    BinaryView of type 'DyldSharedCache' failed to initialize!
    No available/valid debug info parsers for `Raw` view
    Found more than 'analysis.limits.stringSearch' (0x100000) strings aborting search for range: 0 - 0x33be0000
    Analysis update took 12.239 seconds
    
    
    opened by torarnv 1
  • prep for plugin manager

    prep for plugin manager

    Looks like only two changes are required to get this added to the BN plugin manager. The first is to add a requirements.txt -- while ktool and DyldExtractor are versioned, capstone is still a requirement of DyldExtractor so it would be nice to expose that.

    Or, better yet, replace the disassembler with BN's own disassembly to remove the dependency entirely. That also means there's no need to hack around the lack of PAC instructions as BN can disassemble those just fine.

    The other step is to make a release, then we can add the plugin directly to the plugin manager which would be really handy!

    opened by psifertex 1
  • fix relative imports for built-in BN Py 3.8.9 on MacOS

    fix relative imports for built-in BN Py 3.8.9 on MacOS

    I'm not sure whether it's the exact python version or the fact that I'm using the BN shipped Python versus homebrew / ports but I'm unable to use the plugin as-is on MacOS without this change. I don't know how much this versioned DyldExtractor has differed, happy to test/submit upstream in the parent repo if you prefer.

    opened by psifertex 0
Releases(1.0.0)
Owner
cynder
macOS/iOS development @ reverse engineering chick. // maintainer of the iPhone Dev Wiki (https://iphonedev.wiki)
cynder
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target i

NanYoMy 13 Oct 09, 2022
Image data augmentation scheduler for albumentations transforms

albu_scheduler Scheduler for albumentations transforms based on PyTorch schedulers interface Usage TransformMultiStepScheduler import albumentations a

19 Aug 04, 2021
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective Installin

2 Nov 07, 2022
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022
VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

ZJU FAST Lab 86 Nov 18, 2022
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

Stanford Computational Imaging Lab 149 Dec 22, 2022
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Adversrial Machine Learning Benchmarks This code belongs to the papers: Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness? Det

Adversarial Machine Learning 9 Nov 27, 2022
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos

Mitchell Gordon 11 Nov 15, 2022
Pytorch Code for "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation"

Medical-Transformer Pytorch Code for the paper "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation" About this repo: This repo

Jeya Maria Jose 615 Dec 25, 2022
Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation

Info This is the code repository of the work Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation from Elias T

2 Apr 20, 2022
An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

ぼっけなす 2 Aug 29, 2022
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
End-To-End Memory Network using Tensorflow

MemN2N Implementation of End-To-End Memory Networks with sklearn-like interface using Tensorflow. Tasks are from the bAbl dataset. Get Started git clo

Dominique Luna 339 Oct 27, 2022