dyld_shared_cache processing / Single-Image loading for BinaryNinja

Overview

Dyld Shared Cache Parser

Author: cynder (kat)

Dyld Shared Cache Support for BinaryNinja

BinaryNinja Screenshot

BinaryNinja Screenshot

Without any of the fuss of requiring manually loading several unrelated images, or the awful off-image addresses, and with better output than IDA, Hopper, or any other disassembler on the market.

Installation + Usage

  1. Open the plugin manager
  2. Search for "Dyld" and install this plugin

Usage:

  1. Open Dyld Shared Cache file with BN
  2. Select the Image you would like to disassemble
  3. Congrats, you are now Reverse Engineering the Mach-O

Description:

This project acts as an interface for two seperate projects; DyldExtractor, and ktool. Mainly DyldExtractor.

DyldExtractor is a project written primarily by 'arandomdev' designed for CLI standalone dyld_shared_cache extraction. It is the best tool for the job, and reverses the majority of "optimizations" that make DSC reverse engineering ugly and painful. Utilizing this plugin, Binja's processing should outperform IDAs, and wont require IDA's need for repeatedly right clicking and manually loading tons of modules.

This version of DyldExtractor has a lot of modifications (read: a lot of commented out lines) from the original designed to make it function better in the binja environment.

ktool is a multifaceted project I wrote for, primarily, MachO + ObjC Parsing.

It is mainly used for super basic parsing of the output, as we need to properly write the segments to the VM (and scrap all the dsc data that was originally in this file) so the Mach-O View knows how to parse it.

License

This plugin, along with ktool and dyldextractor are released under an MIT license. Both of these plugins are vendored within this project to make installation slightly simpler.

You might also like...
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Learning to Reconstruct 3D Manhattan Wireframes from a Single Image
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image This repository contains the PyTorch implementation of the paper: Yichao Zhou, Hao

Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

This is the official repository for evaluation on the NoW Benchmark Dataset. The goal of the NoW benchmark is to introduce a standard evaluation metric to measure the accuracy and robustness of 3D face reconstruction methods from a single image under variations in viewing angle, lighting, and common occlusions. Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

Code for generating a single image pretraining dataset
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Comments
  • TypeError: cannot unpack non-iterable NoneType object

    TypeError: cannot unpack non-iterable NoneType object

    Tried this just now, and got this, trying to extract the macOS 13.1 x86_64h cache:

    Successfully installed: Dyld Shared Cache Processor
    Loaded python3 plugin 'cxnder_bndyldsharedcache'
    Traceback (most recent call last):
      File "/Applications/Binary Ninja.app/Contents/MacOS/plugins/../../Resources/python/binaryninja/binaryview.py", line 2818, in _init
        return self.init()
      File "/Users/torarne/Library/Application Support/Binary Ninja/repositories/community/plugins/cxnder_bndyldsharedcache/dsc.py", line 101, in init
        stub_fixer.fixStubs(extraction_ctx)
      File "/Users/torarne/Library/Application Support/Binary Ninja/repositories/community/plugins/cxnder_bndyldsharedcache/DyldExtractor/converter/stub_fixer.py", line 1681, in fixStubs
        _StubFixer(extractionCtx).run()
      File "/Users/torarne/Library/Application Support/Binary Ninja/repositories/community/plugins/cxnder_bndyldsharedcache/DyldExtractor/converter/stub_fixer.py", line 1011, in run
        self._symbolizer = _Symbolizer(self._extractionCtx)
      File "/Users/torarne/Library/Application Support/Binary Ninja/repositories/community/plugins/cxnder_bndyldsharedcache/DyldExtractor/converter/stub_fixer.py", line 59, in __init__
        self._enumerateExports()
      File "/Users/torarne/Library/Application Support/Binary Ninja/repositories/community/plugins/cxnder_bndyldsharedcache/DyldExtractor/converter/stub_fixer.py", line 101, in _enumerateExports
        if depInfo := self._getDepInfo(dylib, self._machoCtx):
      File "/Users/torarne/Library/Application Support/Binary Ninja/repositories/community/plugins/cxnder_bndyldsharedcache/DyldExtractor/converter/stub_fixer.py", line 179, in _getDepInfo
        imageOff, dyldCtx = self._dyldCtx.convertAddr(imageAddr)
    TypeError: cannot unpack non-iterable NoneType object
    BinaryView of type 'DyldSharedCache' failed to initialize!
    No available/valid debug info parsers for `Raw` view
    Found more than 'analysis.limits.stringSearch' (0x100000) strings aborting search for range: 0 - 0x33be0000
    Analysis update took 12.239 seconds
    
    
    opened by torarnv 1
  • prep for plugin manager

    prep for plugin manager

    Looks like only two changes are required to get this added to the BN plugin manager. The first is to add a requirements.txt -- while ktool and DyldExtractor are versioned, capstone is still a requirement of DyldExtractor so it would be nice to expose that.

    Or, better yet, replace the disassembler with BN's own disassembly to remove the dependency entirely. That also means there's no need to hack around the lack of PAC instructions as BN can disassemble those just fine.

    The other step is to make a release, then we can add the plugin directly to the plugin manager which would be really handy!

    opened by psifertex 1
  • fix relative imports for built-in BN Py 3.8.9 on MacOS

    fix relative imports for built-in BN Py 3.8.9 on MacOS

    I'm not sure whether it's the exact python version or the fact that I'm using the BN shipped Python versus homebrew / ports but I'm unable to use the plugin as-is on MacOS without this change. I don't know how much this versioned DyldExtractor has differed, happy to test/submit upstream in the parent repo if you prefer.

    opened by psifertex 0
Releases(1.0.0)
Owner
cynder
macOS/iOS development @ reverse engineering chick. // maintainer of the iPhone Dev Wiki (https://iphonedev.wiki)
cynder
Segmentation vgg16 fcn - cityscapes

VGGSegmentation Segmentation vgg16 fcn - cityscapes Priprema skupa skripta prepare_dataset_downsampled.py Iz slika cityscapesa izrezuje haubu automobi

6 Oct 24, 2020
QuanTaichi evaluation suite

QuanTaichi: A Compiler for Quantized Simulations (SIGGRAPH 2021) Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai, W

Taichi Developers 120 Jan 04, 2023
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters"

Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters" Pipeline of CLIP-Adapter CLIP-Adapter is a drop-in modul

peng gao 157 Dec 26, 2022
SOTA model in CIFAR10

A PyTorch Implementation of CIFAR Tricks 调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。 0. Requirement

PJDong 58 Dec 21, 2022
Title: Heart-Failure-Classification

This Notebook is based off an open source dataset available on where I have created models to classify patients who can potentially witness heart failure on the basis of various parameters. The best

Akarsh Singh 2 Sep 13, 2022
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

63 Dec 07, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
Repo for Photon-Starved Scene Inference using Single Photon Cameras, ICCV 2021

Photon-Starved Scene Inference using Single Photon Cameras ICCV 2021 Arxiv Project Video Bhavya Goyal, Mohit Gupta University of Wisconsin-Madison Abs

Bhavya Goyal 5 Nov 15, 2022
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
Toward Multimodal Image-to-Image Translation

BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our

Jun-Yan Zhu 1.4k Dec 22, 2022
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de

hankook 96 Dec 29, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
UMich 500-Level Mobile Robotics Course

MOBILE ROBOTICS: METHODS & ALGORITHMS - WINTER 2022 University of Michigan - NA 568/EECS 568/ROB 530 For slides, lecture notes, and example codes, see

393 Dec 29, 2022
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

万理 5 Jul 26, 2022
Learning to See by Looking at Noise

Learning to See by Looking at Noise This is the official implementation of Learning to See by Looking at Noise. In this work, we investigate a suite o

Manel Baradad Jurjo 82 Dec 24, 2022