dyld_shared_cache processing / Single-Image loading for BinaryNinja

Overview

Dyld Shared Cache Parser

Author: cynder (kat)

Dyld Shared Cache Support for BinaryNinja

BinaryNinja Screenshot

BinaryNinja Screenshot

Without any of the fuss of requiring manually loading several unrelated images, or the awful off-image addresses, and with better output than IDA, Hopper, or any other disassembler on the market.

Installation + Usage

  1. Open the plugin manager
  2. Search for "Dyld" and install this plugin

Usage:

  1. Open Dyld Shared Cache file with BN
  2. Select the Image you would like to disassemble
  3. Congrats, you are now Reverse Engineering the Mach-O

Description:

This project acts as an interface for two seperate projects; DyldExtractor, and ktool. Mainly DyldExtractor.

DyldExtractor is a project written primarily by 'arandomdev' designed for CLI standalone dyld_shared_cache extraction. It is the best tool for the job, and reverses the majority of "optimizations" that make DSC reverse engineering ugly and painful. Utilizing this plugin, Binja's processing should outperform IDAs, and wont require IDA's need for repeatedly right clicking and manually loading tons of modules.

This version of DyldExtractor has a lot of modifications (read: a lot of commented out lines) from the original designed to make it function better in the binja environment.

ktool is a multifaceted project I wrote for, primarily, MachO + ObjC Parsing.

It is mainly used for super basic parsing of the output, as we need to properly write the segments to the VM (and scrap all the dsc data that was originally in this file) so the Mach-O View knows how to parse it.

License

This plugin, along with ktool and dyldextractor are released under an MIT license. Both of these plugins are vendored within this project to make installation slightly simpler.

You might also like...
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Learning to Reconstruct 3D Manhattan Wireframes from a Single Image
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image This repository contains the PyTorch implementation of the paper: Yichao Zhou, Hao

Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

This is the official repository for evaluation on the NoW Benchmark Dataset. The goal of the NoW benchmark is to introduce a standard evaluation metric to measure the accuracy and robustness of 3D face reconstruction methods from a single image under variations in viewing angle, lighting, and common occlusions. Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

Code for generating a single image pretraining dataset
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Comments
  • TypeError: cannot unpack non-iterable NoneType object

    TypeError: cannot unpack non-iterable NoneType object

    Tried this just now, and got this, trying to extract the macOS 13.1 x86_64h cache:

    Successfully installed: Dyld Shared Cache Processor
    Loaded python3 plugin 'cxnder_bndyldsharedcache'
    Traceback (most recent call last):
      File "/Applications/Binary Ninja.app/Contents/MacOS/plugins/../../Resources/python/binaryninja/binaryview.py", line 2818, in _init
        return self.init()
      File "/Users/torarne/Library/Application Support/Binary Ninja/repositories/community/plugins/cxnder_bndyldsharedcache/dsc.py", line 101, in init
        stub_fixer.fixStubs(extraction_ctx)
      File "/Users/torarne/Library/Application Support/Binary Ninja/repositories/community/plugins/cxnder_bndyldsharedcache/DyldExtractor/converter/stub_fixer.py", line 1681, in fixStubs
        _StubFixer(extractionCtx).run()
      File "/Users/torarne/Library/Application Support/Binary Ninja/repositories/community/plugins/cxnder_bndyldsharedcache/DyldExtractor/converter/stub_fixer.py", line 1011, in run
        self._symbolizer = _Symbolizer(self._extractionCtx)
      File "/Users/torarne/Library/Application Support/Binary Ninja/repositories/community/plugins/cxnder_bndyldsharedcache/DyldExtractor/converter/stub_fixer.py", line 59, in __init__
        self._enumerateExports()
      File "/Users/torarne/Library/Application Support/Binary Ninja/repositories/community/plugins/cxnder_bndyldsharedcache/DyldExtractor/converter/stub_fixer.py", line 101, in _enumerateExports
        if depInfo := self._getDepInfo(dylib, self._machoCtx):
      File "/Users/torarne/Library/Application Support/Binary Ninja/repositories/community/plugins/cxnder_bndyldsharedcache/DyldExtractor/converter/stub_fixer.py", line 179, in _getDepInfo
        imageOff, dyldCtx = self._dyldCtx.convertAddr(imageAddr)
    TypeError: cannot unpack non-iterable NoneType object
    BinaryView of type 'DyldSharedCache' failed to initialize!
    No available/valid debug info parsers for `Raw` view
    Found more than 'analysis.limits.stringSearch' (0x100000) strings aborting search for range: 0 - 0x33be0000
    Analysis update took 12.239 seconds
    
    
    opened by torarnv 1
  • prep for plugin manager

    prep for plugin manager

    Looks like only two changes are required to get this added to the BN plugin manager. The first is to add a requirements.txt -- while ktool and DyldExtractor are versioned, capstone is still a requirement of DyldExtractor so it would be nice to expose that.

    Or, better yet, replace the disassembler with BN's own disassembly to remove the dependency entirely. That also means there's no need to hack around the lack of PAC instructions as BN can disassemble those just fine.

    The other step is to make a release, then we can add the plugin directly to the plugin manager which would be really handy!

    opened by psifertex 1
  • fix relative imports for built-in BN Py 3.8.9 on MacOS

    fix relative imports for built-in BN Py 3.8.9 on MacOS

    I'm not sure whether it's the exact python version or the fact that I'm using the BN shipped Python versus homebrew / ports but I'm unable to use the plugin as-is on MacOS without this change. I don't know how much this versioned DyldExtractor has differed, happy to test/submit upstream in the parent repo if you prefer.

    opened by psifertex 0
Releases(1.0.0)
Owner
cynder
macOS/iOS development @ reverse engineering chick. // maintainer of the iPhone Dev Wiki (https://iphonedev.wiki)
cynder
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Jihye Back 520 Jan 04, 2023
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022
Materials for upcoming beginner-friendly PyTorch course (work in progress).

Learn PyTorch for Deep Learning (work in progress) I'd like to learn PyTorch. So I'm going to use this repo to: Add what I've learned. Teach others in

Daniel Bourke 2.3k Dec 29, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023
Implements Gradient Centralization and allows it to use as a Python package in TensorFlow

Gradient Centralization TensorFlow This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique

Rishit Dagli 101 Nov 01, 2022
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

DongGeun-Yoon 19 Jun 07, 2022
[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Using Unreliable Pseudo Labels Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022. Ple

Haochen Wang 268 Dec 24, 2022
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
End-to-end Temporal Action Detection with Transformer. [Under review]

TadTR: End-to-end Temporal Action Detection with Transformer By Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Song Bai, Xiang Bai. This repo holds the c

Xiaolong Liu 105 Dec 25, 2022
adversarial_multi_armed_bandit_variable_plays

Adversarial Multi-Armed Bandit with Variable Plays This code is for paper: Adversarial Online Learning with Variable Plays in the Evasion-and-Pursuit

Yiyang Wang 1 Oct 28, 2021
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 04, 2023
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
ChatBot-Pytorch - A GPT-2 ChatBot implemented using Pytorch and Huggingface-transformers

ChatBot-Pytorch A GPT-2 ChatBot implemented using Pytorch and Huggingface-transf

ParZival 42 Dec 09, 2022
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
An intuitive library to extract features from time series

Time Series Feature Extraction Library Intuitive time series feature extraction This repository hosts the TSFEL - Time Series Feature Extraction Libra

Associação Fraunhofer Portugal Research 589 Jan 04, 2023
Episodic-memory - Ego4D Episodic Memory Benchmark

Ego4D Episodic Memory Benchmark EGO4D is the world's largest egocentric (first p

3 Feb 18, 2022