SOTA model in CIFAR10

Overview

A PyTorch Implementation of CIFAR Tricks

调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。

0. Requirements

  • Python 3.6+
  • torch=1.8.0+cu111
  • torchvision+0.9.0+cu111
  • tqdm=4.26.0
  • PyYAML=6.0

1. Implements

1.1 Tricks

  • Warmup
  • Cosine LR Decay
  • SAM
  • Label Smooth
  • KD
  • Adabound
  • Xavier Kaiming init
  • lr finder

1.2 Augmentation

  • Auto Augmentation
  • Cutout
  • Mixup
  • RICAP
  • Random Erase
  • ShakeDrop

2. Training

2.1 CIFAR-10训练示例

WideResNet28-10 baseline on CIFAR-10:

python train.py --dataset cifar10

WideResNet28-10 +RICAP on CIFAR-10:

python train.py --dataset cifar10 --ricap True

WideResNet28-10 +Random Erasing on CIFAR-10:

python train.py --dataset cifar10 --random-erase True

WideResNet28-10 +Mixup on CIFAR-10:

python train.py --dataset cifar10 --mixup True

3. Results

3.1 原pytorch-ricap的结果

Model Error rate Loss Error rate (paper)
WideResNet28-10 baseline 3.82(96.18) 0.158 3.89
WideResNet28-10 +RICAP 2.82(97.18) 0.141 2.85
WideResNet28-10 +Random Erasing 3.18(96.82) 0.114 4.65
WideResNet28-10 +Mixup 3.02(96.98) 0.158 3.02

3.2 Reimplementation结果

Model Error rate Loss Error rate (paper)
WideResNet28-10 baseline 3.78(96.22) 3.89
WideResNet28-10 +RICAP 2.81(97.19) 2.85
WideResNet28-10 +Random Erasing 3.03(96.97) 0.113 4.65
WideResNet28-10 +Mixup 2.93(97.07) 0.158 3.02

3.3 Half data快速训练验证各网络结构

reimplementation models(no augmentation, half data,epoch200,bs128)

Model Error rate Loss
lenet(cpu爆炸) (70.76)
wideresnet 3.78(96.22)
resnet20 (89.72)
senet (92.34)
resnet18 (92.08)
resnet34 (92.48)
resnet50 (91.72)
regnet (92.58)
nasnet out of mem
shake_resnet26_2x32d (93.06)
shake_resnet26_2x64d (94.14)
densenet (92.06)
dla (92.58)
googlenet (91.90) 0.2675
efficientnetb0(利用率低且慢) (86.82) 0.5024
mobilenet(利用率低) (89.18)
mobilenetv2 (91.06)
pnasnet (90.44)
preact_resnet (90.76)
resnext (92.30)
vgg(cpugpu利用率都高) (88.38)
inceptionv3 (91.84)
inceptionv4 (91.10)
inception_resnet_v2 (83.46)
rir (92.34) 0.3932
squeezenet(CPU利用率高) (89.16) 0.4311
stochastic_depth_resnet18 (90.22)
xception
dpn (92.06) 0.3002
ge_resnext29_8x64d (93.86) 巨慢

3.4 测试cpu gpu影响

TEST: scale/kernel ToyNet

修改网络的卷积层深度,并进行训练,可以得到以下结论:

结论:lenet这种卷积量比较少,只有两层的,cpu利用率高,gpu利用率低。在这个基础上增加深度,用vgg那种直筒方式增加深度,发现深度越深,cpu利用率越低,gpu利用率越高。

修改训练过程的batch size,可以得到以下结论:

结论:bs会影响收敛效果。

3.5 StepLR优化下测试cutout和mixup

architecture epoch cutout mixup C10 test acc (%)
shake_resnet26_2x64d 200 96.33
shake_resnet26_2x64d 200 96.99
shake_resnet26_2x64d 200 96.60
shake_resnet26_2x64d 200 96.46

3.6 测试SAM,ASAM,Cosine,LabelSmooth

architecture epoch SAM ASAM Cosine LR Decay LabelSmooth C10 test acc (%)
shake_resnet26_2x64d 200 96.51
shake_resnet26_2x64d 200 96.80
shake_resnet26_2x64d 200 96.61
shake_resnet26_2x64d 200 96.57

PS:其他库在加长训练过程(epoch=1800)情况下可以实现 shake_resnet26_2x64d achieved 97.71% test accuracy with cutout and mixup!!

3.7 测试cosine lr + shake

architecture epoch cutout mixup C10 test acc (%)
shake_resnet26_2x64d 300 96.66
shake_resnet26_2x64d 300 97.21
shake_resnet26_2x64d 300 96.90
shake_resnet26_2x64d 300 96.73

1800 epoch CIFAR ZOO中结果,由于耗时过久,未进行复现。

architecture epoch cutout mixup C10 test acc (%)
shake_resnet26_2x64d 1800 96.94(cifar zoo)
shake_resnet26_2x64d 1800 97.20(cifar zoo)
shake_resnet26_2x64d 1800 97.42(cifar zoo)
shake_resnet26_2x64d 1800 97.71(cifar zoo)

3.8 Divide and Co-training方案研究

  • lr:
    • warmup (20 epoch)
    • cosine lr decay
    • lr=0.1
    • total epoch(300 epoch)
  • bs=128
  • aug:
    • Random Crop and resize
    • Random left-right flipping
    • AutoAugment
    • Normalization
    • Random Erasing
    • Mixup
  • weight decay=5e-4 (bias and bn undecayed)
  • kaiming weight init
  • optimizer: nesterov

复现:((v100:gpu1) 4min*300/60=20h) top1: 97.59% 本项目目前最高值。

python train.py --model 'pyramidnet272' \
                --name 'divide-co-train' \
                --autoaugmentation True \ 
                --random-erase True \
                --mixup True \
                --epochs 300 \
                --sched 'warmcosine' \
                --optims 'nesterov' \
                --bs 128 \
                --root '/home/dpj/project/data'

3.9 测试多种数据增强

architecture epoch cutout mixup autoaugment random-erase C10 test acc (%)
shake_resnet26_2x64d 200 96.42
shake_resnet26_2x64d 200 96.49
shake_resnet26_2x64d 200 96.17
shake_resnet26_2x64d 200 96.25
shake_resnet26_2x64d 200 96.20
shake_resnet26_2x64d 200 95.82
shake_resnet26_2x64d 200 96.02
shake_resnet26_2x64d 200 96.00
shake_resnet26_2x64d 200 95.83
shake_resnet26_2x64d 200 95.89
shake_resnet26_2x64d 200 96.25
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_orgin' --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_c' --cutout True --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_m' --mixup True --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_a' --autoaugmentation True  --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_r' --random-erase True  --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_cm'  --cutout True --mixup True --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_ca' --cutout True --autoaugmentation True --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_cr' --cutout True --random-erase True --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_ma' --mixup True --autoaugmentation True --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_mr' --mixup True --random-erase True --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_ar' --autoaugmentation True --random-erase True  --bs 64

4. Reference

[1] https://github.com/BIGBALLON/CIFAR-ZOO

[2] https://github.com/pprp/MutableNAS

[3] https://github.com/clovaai/CutMix-PyTorch

[4] https://github.com/4uiiurz1/pytorch-ricap

[5] https://github.com/NUDTNASLab/pytorch-image-models

[6] https://github.com/facebookresearch/LaMCTS

[7] https://github.com/Alibaba-MIIL/ImageNet21K

Owner
PJDong
Computer vision learner, deep learner
PJDong
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv

陈志豪 8 Oct 13, 2022
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Wilson 1.7k Dec 30, 2022
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
This is an open source library implementing hyperbox-based machine learning algorithms

hyperbox-brain is a Python open source toolbox implementing hyperbox-based machine learning algorithms built on top of scikit-learn and is distributed

Complex Adaptive Systems (CAS) Lab - University of Technology Sydney 21 Dec 14, 2022
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection

fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection Introduction This project inherits the property of our pytorc

Jianwei Yang 912 Dec 21, 2022
An NVDA add-on to split screen reader and audio from other programs to different sound channels

An NVDA add-on to split screen reader and audio from other programs to different sound channels (add-on idea credit: Tony Malykh)

Joseph Lee 7 Dec 25, 2022
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022
Official code of the paper "ReDet: A Rotation-equivariant Detector for Aerial Object Detection" (CVPR 2021)

ReDet: A Rotation-equivariant Detector for Aerial Object Detection ReDet: A Rotation-equivariant Detector for Aerial Object Detection (CVPR2021), Jiam

csuhan 334 Dec 23, 2022
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape

THUNLP 23 Dec 31, 2022
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022