GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

Related tags

Deep LearningGPOEO
Overview

GPOEO

GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison.

[1] P. Zou, L. Ang, K. Barker, and R. Ge, “Indicator-directed dynamic power management for iterative workloads on gpu-accelerated systems,” in 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). IEEE, 2020, pp. 559-568.

  1. ./EPOpt contains source code of the GPOEO and ODPP [1].

  2. ./PerformanceMeasurement (PerfMeasure) is a NVIDIA GPU measurer for energy/power/utilities/clocks

Make GPOEO

Modify pathes of headers and libraries in ./EPOpt/makefile . cd ./EPOpt && mkdir ./build && cp makefile ./build cd ./build && make

Make PerfMeasure

Modify pathes of headers and libraries in ./PerformanceMeasurement/makefile . cd ./PerformanceMeasurement && mkdir ./build && cp makefile ./build cd ./build && make

Use GPOEO in python applications

GPOEO only has two APIs:

Begin(GPUID4CUDA, GPUID4NVML, RunMode, MeasureOutDir, ModelDir, TestPrefix)
End()

GPUID4CUDA: GPU ID used in CUDA environment.

GPUID4NVML: GPU ID queried with nvidia-smi and used to initialize CUPTI.

RunMode: "WORK" (run energy saving online); "MEASURE" (measure hardware performance counter metrics and other data for training multi-objective prediction models).

MeasureOutDir: measurement output file path.

ModelDir: the path of multi-objective prediction models.

TestPrefix: prefix name of one run.

The two APIs should be inserted at the beginning and end of the main python file respectively. As shown below:

from PyEPOpt import EPOpt

if __name__=="__main__":
    EPOpt.Begin(GPUID4CUDA, GPUID4NVML, RunMode, MeasureOutDir, ModelDir, TestPrefix)

    .....

    EPOpt.End()

Use ODPP [1] in python applications

ODPP can be implemented as a daemon. However, for the convenience of comparing GPOEO and ODPP, we also implement ODPP into the same form: two APIs.

ODPPBegin(GPUID4CUDA, GPUID4NVML, RunMode, MeasureOutDir, ModelDir, TestPrefix)
ODPPEnd()

GPUID4CUDA: GPU ID used in CUDA environment.

GPUID4NVML: GPU ID queried with nvidia-smi and used to initialize CUPTI.

RunMode: "ODPP" (run ODPP online).

MeasureOutDir: not used.

ModelDir: the path of ODPP models.

TestPrefix: prefix name of one run.

The two APIs should be inserted at the beginning and end of the main python file respectively. As shown below:

from ODPP import ODPPBegin, ODPPEnd

if __name__=="__main__":
    ODPPBegin(GPUID4CUDA, GPUID4NVML, RunMode, MeasureOutDir, ModelDir, TestPrefix)

    .....

    ODPPEnd()
Owner
瑞雪轻飏
瑞雪轻飏
Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)"

Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)" which introduces a new class of deep generative models that gene

Guan-Horng Liu 43 Jan 03, 2023
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Descript 150 Dec 06, 2022
This code reproduces the results of the paper, "Measuring Data Leakage in Machine-Learning Models with Fisher Information"

Fisher Information Loss This repository contains code that can be used to reproduce the experimental results presented in the paper: Awni Hannun, Chua

Facebook Research 43 Dec 30, 2022
Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Luke Melas-Kyriazi 61 Oct 17, 2022
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pedro Savarese 35 Jul 29, 2022
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
DETReg: Unsupervised Pretraining with Region Priors for Object Detection

DETReg: Unsupervised Pretraining with Region Priors for Object Detection Amir Bar, Xin Wang, Vadim Kantorov, Colorado J Reed, Roei Herzig, Gal Chechik

Amir Bar 283 Dec 27, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022
Experiments for Neural Flows paper

Neural Flows: Efficient Alternative to Neural ODEs [arxiv] TL;DR: We directly model the neural ODE solutions with neural flows, which is much faster a

54 Dec 07, 2022
NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

100 Sep 28, 2022
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight

SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia

Fudan Zhang Vision Group 272 Dec 25, 2022
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022
PyTorch wrappers for using your model in audacity!

audacitorch This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for

Hugo Flores García 130 Dec 14, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2022/01/05 By another round of training based on previous weights, our model also achieved a better performance on ACDC (91.61% DSC). W

dotman 92 Dec 25, 2022