Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

Related tags

Deep Learningisvd
Overview

isvd

Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

If you find this code useful, you may cite us as:

@inproceedings{haija2021isvd,
  author={Sami Abu-El-Haija AND Hesham Mostafa AND Marcel Nassar AND Valentino Crespi AND Greg Ver Steeg AND Aram Galstyan},
  title={Implicit SVD for Graph Representation Learning},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021},
}

To run link prediction on Stanford SNAP and node2vec datasets:

To embed with rank-32 SVD:

python3 run_snap_linkpred.py --dataset_name=ppi --dim=32
python3 run_snap_linkpred.py --dataset_name=ca-AstroPh --dim=32
python3 run_snap_linkpred.py --dataset_name=ca-HepTh --dim=32
python3 run_snap_linkpred.py --dataset_name=soc-facebook --dim=32

To embed with rank 256 on half of the training edges, determine "best rank" based on the remaining half, then re-run sVD with the best rank on all of training: (note: negative dim causes this logic):

python3 run_snap_linkpred.py --dataset_name=ppi --dim=-256
python3 run_snap_linkpred.py --dataset_name=ca-AstroPh --dim=-256
python3 run_snap_linkpred.py --dataset_name=ca-HepTh --dim=-256
python3 run_snap_linkpred.py --dataset_name=soc-facebook --dim=-256

To run semi-supervised node classification on Planetoid datasets

You must first download the planetoid dataset as:

mkdir -p ~/data
cd ~/data
git clone [email protected]:kimiyoung/planetoid.git

Afterwards, you may navigate back to this directory and run our code as:

python3 run_planetoid.py --dataset=ind.citeseer
python3 run_planetoid.py --dataset=ind.cora
python3 run_planetoid.py --dataset=ind.pubmed

To run link prediction on Stanford OGB DDI

python3 ogb_linkpred_sing_val_net.py

Note the above will download the dataset from Stanford. If you already have it, you may symlink it into directory dataset

To run link prediction on Stanford OGB ArXiv

As our code imports gttf, you must first clone it onto the repo:

git clone [email protected]:isi-usc-edu/gttf.git

Afterwards, you may run as:

python3 final_obgn_mixed_device.py --funetune_device='gpu:0'

Note the above will download the dataset from Stanford. If you already have it, you may symlink it into directory dataset. You may skip the finetune_device argument if you do not have a GPU installed.

Owner
Sami Abu-El-Haija
Sami Abu-El-Haija
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint Louay Hazami   ·   Rayhane Mama   ·   Ragavan Thurairatn

Rayhane Mama 144 Dec 23, 2022
RGB-stacking 🛑 🟩 🔷 for robotic manipulation

RGB-stacking 🛑 🟩 🔷 for robotic manipulation BLOG | PAPER | VIDEO Beyond Pick-and-Place: Tackling Robotic Stacking of Diverse Shapes, Alex X. Lee*,

DeepMind 95 Dec 23, 2022
🇰🇷 Text to Image in Korean

KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo

HappyFace 74 Sep 22, 2022
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.

📈 Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene

Zach Renwick 42 Jan 04, 2023
The Adapter-Bot: All-In-One Controllable Conversational Model

The Adapter-Bot: All-In-One Controllable Conversational Model This is the implementation of the paper: The Adapter-Bot: All-In-One Controllable Conver

CAiRE 37 Nov 04, 2022
[ICCV 2021] Official PyTorch implementation for Deep Relational Metric Learning.

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

Borui Zhang 39 Dec 10, 2022
High frequency AI based algorithmic trading module.

Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current

59 Dec 14, 2022
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)

Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all view

4 Nov 19, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021

This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c

14 Sep 21, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
A `Neural = Symbolic` framework for sound and complete weighted real-value logic

Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s

International Business Machines 138 Dec 19, 2022
Using modified BiSeNet for face parsing in PyTorch

face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr

zll 1.6k Jan 08, 2023