DanceTrack: Multiple Object Tracking in Uniform Appearance and Diverse Motion

Overview

DanceTrack

DanceTrack is a benchmark for tracking multiple objects in uniform appearance and diverse motion.

DanceTrack provides box and identity annotations.

DanceTrack contains 100 videos, 40 for training(annotations public), 25 for validation(annotations public) and 35 for testing(annotations unpublic). For evaluating on test set, please see CodaLab.


Paper

DanceTrack: Multi-Object Tracking in Uniform Appearance and Diverse Motion

Dataset

Download the dataset from Google Drive or Baidu Drive (code:awew).

Organize as follows:

{DanceTrack ROOT}
|-- dancetrack
|   |-- train
|   |   |-- dancetrack0001
|   |   |   |-- img1
|   |   |   |   |-- 00000001.jpg
|   |   |   |   |-- ...
|   |   |   |-- gt
|   |   |   |   |-- gt.txt            
|   |   |   |-- seqinfo.ini
|   |   |-- ...
|   |-- val
|   |   |-- ...
|   |-- test
|   |   |-- ...
|   |-- train_seqmap.txt
|   |-- val_seqmap.txt
|   |-- test_seqmap.txt
|-- TrackEval
|-- tools
|-- ...

We align our dataset annotations with MOT, so each line in gt.txt contains:

<frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, 1, 1, 1

Evaluation

We use ByteTrack as an example of using DanceTrack. For training details, please see instruction. We provide the trained models in Google Drive or or Baidu Drive (code:awew).

To do evaluation with our provided tookit, we organize the results of validation set as follows:

{DanceTrack ROOT}
|-- val
|   |-- TRACKER_NAME
|   |   |-- dancetrack000x.txt
|   |   |-- ...
|   |-- ...

where dancetrack000x.txt is the output file of the video episode dancetrack000x, each line of which contains:

<frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, <conf>, -1, -1, -1

Then, simply run the evalution code:

python3 TrackEval/scripts/run_mot_challenge.py --SPLIT_TO_EVAL val  --METRICS HOTA CLEAR Identity  --GT_FOLDER dancetrack/val --SEQMAP_FILE dancetrack/val_seqmap.txt --SKIP_SPLIT_FOL True   --TRACKERS_TO_EVAL '' --TRACKER_SUB_FOLDER ''  --USE_PARALLEL True --NUM_PARALLEL_CORES 8 --PLOT_CURVES False --TRACKERS_FOLDER val/TRACKER_NAME 
Tracker HOTA DetA AssA MOTA IDF1
ByteTrack 47.1 70.5 31.5 88.2 51.9

Besides, we also provide the visualization script. The usage is as follow:

python3 tools/txt2video_dance.py --img_path dancetrack --split val --tracker TRACKER_NAME

Competition

Organize the results of test set as follows:

{DanceTrack ROOT}
|-- test
|   |-- tracker
|   |   |-- dancetrack000x.txt
|   |   |-- ...

Each line of dancetrack000x.txt contains:

<frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, <conf>, -1, -1, -1

Archive tracker folder to tracker.zip and submit to CodaLab. Please note: (1) archive tracker folder, instead of txt files. (2) the folder name must be tracker.

The return will be:

Tracker HOTA DetA AssA MOTA IDF1
tracker 47.7 71.0 32.1 89.6 53.9

For more detailed metrics and metrics on each video, click on download output from scoring step in CodaLab.

Run the visualization code:

python3 tools/txt2video_dance.py --img_path dancetrack --split test --tracker tracker

Joint-Training

We use joint-training with other datasets to predict mask, pose and depth. CenterNet is provided as an example. For details of joint-trainig, please see joint-training instruction. We provide the trained models in Google Drive or Baidu Drive(code:awew).

For mask demo, run

cd CenterNet/src
python3 demo.py ctseg --demo  ../../dancetrack/val/dancetrack000x/img1 --load_model ../models/dancetrack_coco_mask.pth --debug 4 --tracking 
cd ../..
python3 tools/img2video.py --img_file CenterNet/exp/ctseg/default/debug --video_name dancetrack000x_mask.avi

For pose demo, run

cd CenterNet/src
python3 demo.py multi_pose --demo  ../../dancetrack/val/dancetrack000x/img1 --load_model ../models/dancetrack_coco_pose.pth --debug 4 --tracking 
cd ../..
python3 tools/img2video.py --img_file CenterNet/exp/multi_pose/default/debug --video_name dancetrack000x_pose.avi

For depth demo, run

cd CenterNet/src
python3 demo.py ddd --demo  ../../dancetrack/val/dancetrack000x/img1 --load_model ../models/dancetrack_kitti_ddd.pth --debug 4 --tracking --test_focal_length 640 --world_size 16 --out_size 128
cd ../..
python3 tools/img2video.py --img_file CenterNet/exp/ddd/default/debug --video_name dancetrack000x_ddd.avi

Agreement

  • The dataset of DanceTrack is available for non-commercial research purposes only.
  • All videos and images of DanceTrack are obtained from the Internet which are not property of HKU, CMU or ByteDance. These three organizations are not responsible for the content nor the meaning of these videos and images.
  • The code of DanceTrack is released under the MIT License.

Acknowledgement

The evaluation metrics and code are from MOT Challenge and TrackEval. The inference code is from ByteTrack. The joint-training code is modified from CenterTrack and CenterNet, where the instance segmentation code is from CenterNet-CondInst. Thanks for their wonderful and pioneering works !

Citation

If you use DanceTrack in your research or wish to refer to the baseline results published here, please use the following BibTeX entry:

@article{peize2021dance,
  title   =  {DanceTrack: Multi-Object Tracking in Uniform Appearance and Diverse Motion},
  author  =  {Peize Sun and Jinkun Cao and Yi Jiang and Zehuan Yuan and Song Bai and Kris Kitani and Ping Luo},
  journal =  {arXiv preprint arXiv:2111.14690},
  year    =  {2021}
}
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Eder Santana 7 Jan 24, 2022
Public repository created to store my custom-made tools for Just Dance (UbiArt Engine)

Woody's Just Dance Tools Public repository created to store my custom-made tools for Just Dance (UbiArt Engine) Development and updates Almost all of

Wodson de Andrade 8 Dec 24, 2022
Memory efficient transducer loss computation

Introduction This project implements the optimization techniques proposed in Improving RNN Transducer Modeling for End-to-End Speech Recognition to re

Fangjun Kuang 51 Nov 25, 2022
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
Underwater industrial application yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Prof

8 Nov 09, 2022
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
Realtime segmentation with ENet, the fast and accurate segmentation net.

Enet This is a realtime segmentation net with almost 22 fps on GTX1080 ti, and the model size is very small with only 28M. This repo contains the infe

JinTian 14 Aug 30, 2022
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
Predict and time series avocado hass

RECOMMENDER SYSTEM MARKETING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU 1. Giới thiệu - Tiki là một hệ sinh thái thương mại "all in one", trong đó có tiki.vn, là

hieulmsc 3 Jan 10, 2022
Level Based Customer Segmentation

level_based_customer_segmentation Level Based Customer Segmentation Persona Veri Seti kullanılarak müşteri segmentasyonu yapılmıştır. KOLONLAR : PRICE

Buse Yıldırım 6 Dec 21, 2021
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
PyTorch implementation for "Mining Latent Structures with Contrastive Modality Fusion for Multimedia Recommendation"

MIRCO PyTorch implementation for paper: Latent Structures Mining with Contrastive Modality Fusion for Multimedia Recommendation Dependencies Python 3.

Big Data and Multi-modal Computing Group, CRIPAC 9 Dec 08, 2022
Config files for my GitHub profile.

Canalyst Candas Data Science Library Name Canalyst Candas Description Built by a former PM / analyst to give anyone with a little bit of Python knowle

Canalyst Candas 13 Jun 24, 2022
This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales

Intro This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales Vehicle Sam

39 Jul 21, 2022
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
SciFive: a text-text transformer model for biomedical literature

SciFive SciFive provided a Text-Text framework for biomedical language and natural language in NLP. Under the T5's framework and desrbibed in the pape

Long Phan 54 Dec 24, 2022