Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Related tags

Deep Learningpgn2tex
Overview

Pgn2Latex (WIP)

A simple script to make pdf from pgn files and studies. It's still work in progress and I hope to improve it in the future. Please feel to reach out or to contribute by submitting issues and pull requests!

Examples

Some examples can be found in the examples/ directory. At the moment there is a book on the Stafford Gambit based on this study and a book of puzzles.

Requirements

Python

pip install -r requirements.txt

Latex

It uses xskak and skak to draw the chessboards. The latex files should be compiled using xelatex.

Usage

Studies

> python pgn2tex/study.py --help
usage: study.py [-h] [--mode {single,study}] [--players] [--template TEMPLATE] [--front-page FRONT_PAGE] [-o OUTPUT] file

Convert a PGN file to a latex document. It is supposed to be used to create book from a study or a single game analysis.

positional arguments:
  file                  PGN File to parse

options:
  -h, --help            show this help message and exit
  --mode {single,study}, -m {single,study}
                        Wether to treat each game independently or as one single large study with several chapters.
  --players, -p         Add player names
  --template TEMPLATE, -t TEMPLATE
                        Template file to use, if none only the latex content is generated with headers / document class, it can be input later on in any latex document.
  --front-page FRONT_PAGE, -f FRONT_PAGE
                        Path to a pdf frontpage
  -o OUTPUT, --output OUTPUT
> python pgn2tex/study.py examples/lichess_study_stafford-gambit_by_wyggam_2020.10.04.pgn --mode study -o examples/stafford.tex --template pgn2tex/templates/book.tex --front-page pgn2tex/templates/frontpage_stafford.pdf
> cd examples
> xelatex stafford.tex
> xelatex stafford.tex # for table of content and cross refs

Puzzles

You first need to download the lichess puzzle database and the themes description, assuming you are in the root directory of the repo:

mkdir -p data 
cd data 
wget https://database.lichess.org/lichess_db_puzzle.csv.bz2 && bzip2 -d lichess_db_puzzle.csv.bz2 
wget https://raw.githubusercontent.com/lichess-org/lila/master/translation/source/puzzleTheme.xml
cd ..

Usage:

usage: puzzles.py [-h] [--problems PROBLEMS]
                  [--theme {advancedPawn,advantage,anastasiaMate,arabianMate,attackingF2F7,attraction,backRankMate,bishopEndgame,bodenMate,castling,capturingDefender,crushing,doubleBishopMate,dovetailMate,equality,kingsideAttack,clearance,defensiveMove,deflection,discoveredAttack,doubleCheck,endgame,exposedKing,fork,hangingPiece,hookMate,interference,intermezzo,knightEndgame,long,master,masterVsMaster,mate,mateIn1,mateIn2,mateIn3,mateIn4,mateIn5,middlegame,oneMove,opening,pawnEndgame,pin,promotion,queenEndgame,queenRookEndgame,queensideAttack,quietMove,rookEndgame,sacrifice,short,skewer,smotheredMate,superGM,trappedPiece,underPromotion,veryLong,xRayAttack,zugzwang,healthyMix,playerGames,puzzleDownloadInformation} [{advancedPawn,advantage,anastasiaMate,arabianMate,attackingF2F7,attraction,backRankMate,bishopEndgame,bodenMate,castling,capturingDefender,crushing,doubleBishopMate,dovetailMate,equality,kingsideAttack,clearance,defensiveMove,deflection,discoveredAttack,doubleCheck,endgame,exposedKing,fork,hangingPiece,hookMate,interference,intermezzo,knightEndgame,long,master,masterVsMaster,mate,mateIn1,mateIn2,mateIn3,mateIn4,mateIn5,middlegame,oneMove,opening,pawnEndgame,pin,promotion,queenEndgame,queenRookEndgame,queensideAttack,quietMove,rookEndgame,sacrifice,short,skewer,smotheredMate,superGM,trappedPiece,underPromotion,veryLong,xRayAttack,zugzwang,healthyMix,playerGames,puzzleDownloadInformation} ...]]
                  [-m MIN_RATING] [-s STEP_SIZE] [-M MAX_RATING] [--template TEMPLATE] [--front-page FRONT_PAGE] [--output OUTPUT]

Generate latex with chess puzzles from the lichess database

options:
  -h, --help            show this help message and exit
  --problems PROBLEMS, -p PROBLEMS
                        Max number of problems to sample in each theme/rating range.
  --theme {advancedPawn,advantage,anastasiaMate,arabianMate,attackingF2F7,attraction,backRankMate,bishopEndgame,bodenMate,castling,capturingDefender,crushing,doubleBishopMate,dovetailMate,equality,kingsideAttack,clearance,defensiveMove,deflection,discoveredAttack,doubleCheck,endgame,exposedKing,fork,hangingPiece,hookMate,interference,intermezzo,knightEndgame,long,master,masterVsMaster,mate,mateIn1,mateIn2,mateIn3,mateIn4,mateIn5,middlegame,oneMove,opening,pawnEndgame,pin,promotion,queenEndgame,queenRookEndgame,queensideAttack,quietMove,rookEndgame,sacrifice,short,skewer,smotheredMate,superGM,trappedPiece,underPromotion,veryLong,xRayAttack,zugzwang,healthyMix,playerGames,puzzleDownloadInformation} [{advancedPawn,advantage,anastasiaMate,arabianMate,attackingF2F7,attraction,backRankMate,bishopEndgame,bodenMate,castling,capturingDefender,crushing,doubleBishopMate,dovetailMate,equality,kingsideAttack,clearance,defensiveMove,deflection,discoveredAttack,doubleCheck,endgame,exposedKing,fork,hangingPiece,hookMate,interference,intermezzo,knightEndgame,long,master,masterVsMaster,mate,mateIn1,mateIn2,mateIn3,mateIn4,mateIn5,middlegame,oneMove,opening,pawnEndgame,pin,promotion,queenEndgame,queenRookEndgame,queensideAttack,quietMove,rookEndgame,sacrifice,short,skewer,smotheredMate,superGM,trappedPiece,underPromotion,veryLong,xRayAttack,zugzwang,healthyMix,playerGames,puzzleDownloadInformation} ...]
                        Name of the themes to be used.
  -m MIN_RATING, --min-rating MIN_RATING
                        Minimum rating of the problems.
  -s STEP_SIZE, --step-size STEP_SIZE
                        Step size from problem ratings
  -M MAX_RATING, --max-rating MAX_RATING
                        Maximum rating of the problems.
  --template TEMPLATE, -t TEMPLATE
                        Template file to use, if none only the latex content is generated with headers / document class, it can be input later on in any latex document.
  --front-page FRONT_PAGE, -f FRONT_PAGE
                        Path to a pdf frontpage
  --output OUTPUT, -o OUTPUT
                        Output file

Example:

python pgn2tex/puzzles.py --template pgn2tex/templates/book.tex --front-page pgn2tex/templates/frontpage_puzzles.pdf  --output examples/puzzles.tex
cd examples
xelatex puzzles.tex
xelatex puzzles.tex # for table of contents

Code formatting

The code is formatted using Black

Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a

Microsoft 365 Jan 04, 2023
Progressive Growing of GANs for Improved Quality, Stability, and Variation

Progressive Growing of GANs for Improved Quality, Stability, and Variation — Official TensorFlow implementation of the ICLR 2018 paper Tero Karras (NV

Tero Karras 5.9k Jan 05, 2023
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

mmTransformer Introduction This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented

DeciForce: Crossroads of Machine Perception and Autonomy 232 Dec 31, 2022
Implementation of Heterogeneous Graph Attention Network

HetGAN Implementation of Heterogeneous Graph Attention Network This is the code repository of paper "Prediction of Metro Ridership During the COVID-19

5 Dec 28, 2021
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

Junha Lee 10 Dec 02, 2022
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
Denoising Normalizing Flow

Denoising Normalizing Flow Christian Horvat and Jean-Pascal Pfister 2021 We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introd

CHrvt 17 Oct 15, 2022
Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

Wonjun Ko 4 Jun 09, 2022
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022
CONditionals for Ordinal Regression and classification in PyTorch

CONDOR pytorch implementation for ordinal regression with deep neural networks. Documentation: https://GarrettJenkinson.github.io/condor_pytorch About

7 Jul 25, 2022
[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

On Sampling Collaborative Filtering Datasets This repository contains the implementation of many popular sampling strategies, along with various expli

Noveen Sachdeva 17 Dec 08, 2022
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks

Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S

Rodrigo Veiga 3 Nov 24, 2022
Categorizing comments on YouTube into different categories.

Youtube Comments Categorization This repo is for categorizing comments on a youtube video into different categories. negative (grievances, complaints,

Rhitik 5 Nov 26, 2022