PyTorch implementation of spectral graph ConvNets, NIPS’16

Overview

Graph ConvNets in PyTorch

October 15, 2017

Xavier Bresson

http://www.ntu.edu.sg/home/xbresson
https://github.com/xbresson
https://twitter.com/xbresson

Description

Prototype implementation in PyTorch of the NIPS'16 paper:
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
M Defferrard, X Bresson, P Vandergheynst
Advances in Neural Information Processing Systems, 3844-3852, 2016
ArXiv preprint: arXiv:1606.09375

Code objective

The code provides a simple example of graph ConvNets for the MNIST classification task.
The graph is a 8-nearest neighbor graph of a 2D grid.
The signals on graph are the MNIST images vectorized as $28^2 \times 1$ vectors.

Installation

git clone https://github.com/xbresson/graph_convnets_pytorch.git
cd graph_convnets_pytorch
pip install -r requirements.txt # installation for python 3.6.2
python check_install.py
jupyter notebook # run the 2 notebooks

Results

GPU Quadro M4000

  • Standard ConvNets: 01_standard_convnet_lenet5_mnist_pytorch.ipynb, accuracy= 99.31, speed= 6.9 sec/epoch.
  • Graph ConvNets: 02_graph_convnet_lenet5_mnist_pytorch.ipynb, accuracy= 99.19, speed= 100.8 sec/epoch

Note

PyTorch has not yet implemented function torch.mm(sparse, dense) for variables: https://github.com/pytorch/pytorch/issues/2389. It will be certainly implemented but in the meantime, I defined a new autograd function for sparse variables, called "my_sparse_mm", by subclassing torch.autograd.function and implementing the forward and backward passes.

class my_sparse_mm(torch.autograd.Function):
    """
    Implementation of a new autograd function for sparse variables, 
    called "my_sparse_mm", by subclassing torch.autograd.Function 
    and implementing the forward and backward passes.
    """
    
    def forward(self, W, x):  # W is SPARSE
        self.save_for_backward(W, x)
        y = torch.mm(W, x)
        return y
    
    def backward(self, grad_output):
        W, x = self.saved_tensors 
        grad_input = grad_output.clone()
        grad_input_dL_dW = torch.mm(grad_input, x.t()) 
        grad_input_dL_dx = torch.mm(W.t(), grad_input )
        return grad_input_dL_dW, grad_input_dL_dx

When to use this algorithm?

Any problem that can be cast as analyzing a set of signals on a fixed graph, and you want to use ConvNets for this analysis.




Owner
Xavier Bresson
Xavier Bresson
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.

Hand Gesture Volume Control Modules There are basically three modules Handtracking Program Handtracking Module Volume Control Program Handtracking Pro

VITTAL 1 Jan 12, 2022
pytorch bert intent classification and slot filling

pytorch_bert_intent_classification_and_slot_filling 基于pytorch的中文意图识别和槽位填充 说明 基本思路就是:分类+序列标注(命名实体识别)同时训练。 使用的预训练模型:hugging face上的chinese-bert-wwm-ext 依

西西嘛呦 33 Dec 15, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022
Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties

Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties 8.11.2021 Andrij Vasylenko I

Leverhulme Research Centre for Functional Materials Design 4 Dec 20, 2022
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 05, 2022
A pytorch reprelication of the model-based reinforcement learning algorithm MBPO

Overview This is a re-implementation of the model-based RL algorithm MBPO in pytorch as described in the following paper: When to Trust Your Model: Mo

Xingyu Lin 93 Jan 05, 2023
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives

Code for the paper: Adversarial Machine Learning: Bayesian Perspectives This repository contains code for reproducing the experiments in the ** Advers

Roi Naveiro 2 Nov 11, 2022
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022
Using LSTM write Tang poetry

本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。

56 Dec 15, 2022
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022
Official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive

TTT++ This is an official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive? TL;DR: Online Feature Alignment + Str

VITA lab at EPFL 39 Dec 25, 2022
ACV is a python library that provides explanations for any machine learning model or data.

ACV is a python library that provides explanations for any machine learning model or data. It gives local rule-based explanations for any model or data and different Shapley Values for tree-based mod

Salim Amoukou 85 Dec 27, 2022
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies

REST The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. Usage Download dataset Download

DMIRLAB 2 Mar 13, 2022