Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Overview

Follow the development of our desktop client here

Paaster

Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Preview

Video of paaster in action! Mobile preview

Features

Looking to build a client for paaster?

Check out our Integration documentation

Security

What is E2EE?

E2EE or end to end encryption is a zero trust encryption methodology. When you paste code into paaster the code is encrypted locally with a secret generated on your browser. This secret is never shared with the server & only people you share the link with can view the paste.

Can I trust a instance of paaster not hosted by me?

No. Anyone could modify the functionality of paaster to expose your secret key to the server. We recommend using a instance you host or trust.

How are client secrets stored?

Client-sided secrets are stored in localStorage on paste creation (for paste history.) Anything else would be retrievable by the server or be overly complicated. This does make paaster vulnerable to malicious javascript being executed, but this would require malicious javascript to be present when the svelte application is built. If this was the case you'd have bigger issues, like the module just reading all inputs & getting the plain text paste.

How are client secrets transported?

Paaster uses URI fragments to transport secrets, according to the Mozilla foundation URI fragments aren't meant to be sent to the server. Bitwarden also has a article covering this usage here.

How are server secrets stored?

Server-sided secrets are stored in localStorage on paste creation, allowing you to modify or delete pastes later on. Server-sided secrets are generated on the server using the python secrets module & are stored in the database using bcrypt hashing.

Cipher

paaster is built using the forge module, using AES-256 in CBC mode with PKCS7 padding & PBKDF2 key derivation at 50,000 iterations. More details are located in our Integration documentation.

Shortcuts

  • Ctrl+V - Paste code.
  • Ctrl+S - Download code as file.
  • Ctrl+A - Copy all code to clipboard.
  • Ctrl+X - Copy URL to clipboard.

Requesting features

  • Open a new issue to request a feature (one issue per feature.)

What we won't add

  • Paste editing.
    • paaster isn't a text editor, it's a pastebin.
  • Paste button.
    • paaster isn't a text editor, when code is inputted it will always be automatically uploaded.
  • Optional encryption.
    • paaster will never have opt-in / opt-out encryption, encryption will always be present.

Setup

Production with Docker

  • git clone --branch Production https://github.com/WardPearce/paaster
  • Configure docker-compose.yml
  • Proxy exposed ports using Nginx (or whatever reverse proxy you prefer.)
  • FRONTEND_PROXIED should be the proxied address for "paaster_frontend". E.g. for paaster.io this is "https://paaster.io"
  • VITE_BACKEND should be the proxied address for "paaster_starlette". E.g. for paaster.io this is "https://api.paaster.io"
  • sudo docker-compose build; sudo docker-compose up -d

Using Rclone

Using rclone with Docker Compose

Basically the most important part is to install fuse, create /var/lib/docker-plugins/rclone/config & /var/lib/docker-plugins/rclone/cache, install the docker plugin docker plugin install rclone/docker-volume-rclone:amd64 args="-v" --alias rclone --grant-all-permissions, configure the rclone.conf for the storage service you want to use & then configure your docker compose to use the rclone volume. Example rclone docker compose.

Production without docker

This setup is not recommended & requires more research / knowledge.

  • git clone --branch Production https://github.com/WardPearce/paaster.
  • cd paaster-frontend
  • Create .env
    • VITE_NAME - The name displayed on the website.
    • VITE_BACKEND - The URL of the API.
  • Install nodejs
    • npm install
    • npm run build
  • Serve files generated in dist with Nginx (or whatever reverse proxy you use.)
  • cd paaster-backend
  • Install Python 3.7+
    • pip3 install -r requirements.txt
    • Configure main.py following the guide for uvicorn.
  • Pass environmental variables
    • REDIS_HOST
    • REDIS_PORT
    • MONGO_IP
    • MONGO_PORT
    • MONGO_DB
    • FRONTEND_PROXIED - The URL of the Frontend.
  • Proxy port with Nginx (or whatever reverse proxy you use.)

Development

  • git clone https://github.com/WardPearce/paaster.
  • cd paaster-frontend
  • Create .env
    • VITE_NAME - The name displayed on the website.
    • VITE_BACKEND - The URL of the API.
  • Install nodejs
    • npm install
    • npm run dev
  • cd paaster-backend
  • Pass environmental variables
    • REDIS_HOST
    • REDIS_PORT
    • MONGO_IP
    • MONGO_PORT
    • MONGO_DB
    • FRONTEND_PROXIED - The URL of the Frontend.
  • Install Python 3.7+
    • pip3 install -r requirements.txt
    • Run main.py
Owner
Ward
Privacy advocate & open source developer
Ward
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
ATAC: Adversarially Trained Actor Critic

ATAC: Adversarially Trained Actor Critic Adversarially Trained Actor Critic for Offline Reinforcement Learning by Ching-An Cheng*, Tengyang Xie*, Nan

Microsoft 41 Dec 08, 2022
This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

Seyed Mahdi Roostaiyan 2 Nov 08, 2022
Finding all things on-prem Microsoft for password spraying and enumeration.

msprobe About Installing Usage Examples Coming Soon Acknowledgements About Finding all things on-prem Microsoft for password spraying and enumeration.

205 Jan 09, 2023
Code repository for "Stable View Synthesis".

Stable View Synthesis Code repository for "Stable View Synthesis". Setup Install the following Python packages in your Python environment - numpy (1.1

Intelligent Systems Lab Org 195 Dec 24, 2022
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
CausaLM: Causal Model Explanation Through Counterfactual Language Models

CausaLM: Causal Model Explanation Through Counterfactual Language Models Authors: Amir Feder, Nadav Oved, Uri Shalit, Roi Reichart Abstract: Understan

Amir Feder 39 Jul 10, 2022
This repository holds the code for the paper "Deep Conditional Gaussian Mixture Model forConstrained Clustering".

Deep Conditional Gaussian Mixture Model for Constrained Clustering. This repository holds the code for the paper Deep Conditional Gaussian Mixture Mod

17 Oct 30, 2022
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D

100 Dec 22, 2022
E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

MagInkCal This repo contains the code needed to drive an E-Ink Magic Calendar that uses a battery powered (PiSugar2) Raspberry Pi Zero WH to retrieve

2.8k Dec 28, 2022
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022
REGTR: End-to-end Point Cloud Correspondences with Transformers

REGTR: End-to-end Point Cloud Correspondences with Transformers This repository contains the source code for REGTR. REGTR utilizes multiple transforme

Zi Jian Yew 108 Dec 17, 2022
Analyses of the individual electric field magnitudes with Roast.

Aloi Davide - PhD Student (UoB) Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal M

Davide Aloi 7 Dec 15, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
Controlling a game using mediapipe hand tracking

These scripts use the Google mediapipe hand tracking solution in combination with a webcam in order to send game instructions to a racing game. It features 2 methods of control

3 May 17, 2022
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022