The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper.

Overview

Intermdiate layer matters - SSL

The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper.

  1. Download the data for the experiments:

The data can be downloaded from kaggle.com. NIH chest-xray dataset: https://www.kaggle.com/nih-chest-xrays/data Breast cancer histopathology dataset: https://www.kaggle.com/paultimothymooney/breast-histopathology-images Diabetic Retinopathy dataset: https://www.kaggle.com/c/diabetic-retinopathy-detection/data

  1. Training of SSL models:

To train the ssl models for moco, moco-mse and moco-btwins, please use 'train_ssl_moco.py', 'train_ssl_moco_mse.py' and 'train_ssl_moco_btwins.py' respectively. The code works for first two datasets. For the diabetic retinopathy dataset, please write a dataloader like "chest_xray_supervised.py" and a datamodule file like "chest_xray_dm.py". Import these files in 'train_ssl_moco.py', 'train_ssl_moco_mse.py' and 'train_ssl_moco_btwins.py' and make necesary changes. The same code can work for the diabetic retinopathy dataset.

  1. Fine tuning the models:

To finetune the models, please use the "fine_tune_moco_chestxray.py" and "fine_tune_moco_hist.py" for NIH chest xray and Breast cancer histopathology data, respectively. For the diabetic retinopathy dataset, please write the code for fine tuning using/similar to "fine_tune_moco_chestxray.py"

  1. Probing the models:

To probe the intermediate layers of the model, please use the "probing_moco_chestxray.py" and "probing_moco_hist.py" for NIH chest xray and Breast cancer histopathology data, respectively. For the diabetic retinopathy dataset, please write the code for probing the intermediate layers using/similar to "probing_moco_chestxray.py"

  1. Feature reuse analysis:

To compute the feature similarity, perform the inference using your model, store the intermediate layer representations and use "CKA.py" for computing the kernel similarity with sigma = 0.8.

Owner
Aakash Kaku
Enthusiast of using Deep Learning in Medicine and Machine Learning in Finance and Marketing. Master of Business Administration and Data Sciences
Aakash Kaku
IntelĀ® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs

IntelĀ® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep l

Intel Corporation 846 Jan 04, 2023
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 04, 2021
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
PiRank: Learning to Rank via Differentiable Sorting

PiRank: Learning to Rank via Differentiable Sorting This repository provides a reference implementation for learning PiRank-based models as described

54 Dec 17, 2022
AlgoVision - A Framework for Differentiable Algorithms and Algorithmic Supervision

NeurIPS 2021 Paper "Learning with Algorithmic Supervision via Continuous Relaxations"

Felix Petersen 76 Jan 01, 2023
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
Code for the tech report Toward Training at ImageNet Scale with Differential Privacy

Differentially private Imagenet training Code for the tech report Toward Training at ImageNet Scale with Differential Privacy by Alexey Kurakin, Steve

Google Research 29 Nov 03, 2022
TransReID: Transformer-based Object Re-Identification

TransReID: Transformer-based Object Re-Identification [arxiv] The official repository for TransReID: Transformer-based Object Re-Identification achiev

569 Dec 30, 2022
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
Some pre-commit hooks for OpenMMLab projects

pre-commit-hooks Some pre-commit hooks for OpenMMLab projects. Using pre-commit-hooks with pre-commit Add this to your .pre-commit-config.yaml - rep

OpenMMLab 16 Nov 29, 2022
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

LEYA 13 Nov 30, 2022
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023
PyTorch implementation of ENet

PyTorch-ENet PyTorch (v1.1.0) implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from the lua-torc

David Silva 333 Dec 29, 2022
Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"

Topographic Variational Autoencoder Paper: https://arxiv.org/abs/2109.01394 Getting Started Install requirements with Anaconda: conda env create -f en

T. Andy Keller 69 Dec 12, 2022