PyTorch reimplementation of Diffusion Models

Overview

PyTorch pretrained Diffusion Models

A PyTorch reimplementation of Denoising Diffusion Probabilistic Models with checkpoints converted from the author's TensorFlow implementation.

Quickstart

Running

pip install -e git+https://github.com/pesser/pytorch_diffusion.git#egg=pytorch_diffusion
pytorch_diffusion_demo

will start a Streamlit demo. It is recommended to run the demo with a GPU available.

demo

Usage

Diffusion models with pretrained weights for cifar10, lsun-bedroom, lsun_cat or lsun_church can be loaded as follows:

from pytorch_diffusion import Diffusion

diffusion = Diffusion.from_pretrained("lsun_church")
samples = diffusion.denoise(4)
diffusion.save(samples, "lsun_church_sample_{:02}.png")

Prefix the name with ema_ to load the averaged weights that produce better results. The U-Net model used for denoising is available via diffusion.model and can also be instantiated on its own:

from pytorch_diffusion import Model

model = Model(resolution=32,
              in_channels=3,
              out_ch=3,
              ch=128,
              ch_mult=(1,2,2,2),
              num_res_blocks=2,
              attn_resolutions=(16,),
              dropout=0.1)

This configuration example corresponds to the model used on CIFAR-10.

Producing samples

If you installed directly from github, you can find the cloned repository in <venv path>/src/pytorch_diffusion for virtual environments, and <cwd>/src/pytorch_diffusion for global installs. There, you can run

python pytorch_diffusion/diffusion.py <name> <bs> <nb>

where <name> is one of cifar10, lsun-bedroom, lsun_cat, lsun_church, or one of these names prefixed with ema_, <bs> is the batch size and <nb> the number of batches. This will produce samples from the PyTorch models and save them to results/<name>/.

Results

Evaluating 50k samples with torch-fidelity gives

Dataset EMA Framework Model FID
CIFAR10 Train no PyTorch cifar10 12.13775
TensorFlow tf_cifar10 12.30003
yes PyTorch ema_cifar10 3.21213
TensorFlow tf_ema_cifar10 3.245872
CIFAR10 Validation no PyTorch cifar10 14.30163
TensorFlow tf_cifar10 14.44705
yes PyTorch ema_cifar10 5.274105
TensorFlow tf_ema_cifar10 5.325035

To reproduce, generate 50k samples from the converted PyTorch models provided in this repo with

`python pytorch_diffusion/diffusion.py <Model> 500 100`

and with

python -c "import convert as m; m.sample_tf(500, 100, which=['cifar10', 'ema_cifar10'])"

for the original TensorFlow models.

Running conversions

The converted pytorch checkpoints are provided for download. If you want to convert them on your own, you can follow the steps described here.

Setup

This section assumes your working directory is the root of this repository. Download the pretrained TensorFlow checkpoints. It should follow the original structure,

diffusion_models_release/
  diffusion_cifar10_model/
    model.ckpt-790000.data-00000-of-00001
    model.ckpt-790000.index
    model.ckpt-790000.meta
  diffusion_lsun_bedroom_model/
    ...
  ...

Set the environment variable TFROOT to the directory where you want to store the author's repository, e.g.

export TFROOT=".."

Clone the diffusion repository,

git clone https://github.com/hojonathanho/diffusion.git ${TFROOT}/diffusion

and install their required dependencies (pip install ${TFROOT}/requirements.txt). Then add the following to your PYTHONPATH:

export PYTHONPATH=".:./scripts:${TFROOT}/diffusion:${TFROOT}/diffusion/scripts:${PYTHONPATH}"

Testing operations

To test the pytorch implementations of the required operations against their TensorFlow counterparts under random initialization and random inputs, run

python -c "import convert as m; m.test_ops()"

Converting checkpoints

To load the pretrained TensorFlow models, copy the weights into the pytorch models, check for equality on random inputs and finally save the corresponding pytorch checkpoints, run

python -c "import convert as m; m.transplant_cifar10()"
python -c "import convert as m; m.transplant_cifar10(ema=True)"
python -c "import convert as m; m.transplant_lsun_bedroom()"
python -c "import convert as m; m.transplant_lsun_bedroom(ema=True)"
python -c "import convert as m; m.transplant_lsun_cat()"
python -c "import convert as m; m.transplant_lsun_cat(ema=True)"
python -c "import convert as m; m.transplant_lsun_church()"
python -c "import convert as m; m.transplant_lsun_church(ema=True)"

Pytorch checkpoints will be saved in

diffusion_models_converted/
  diffusion_cifar10_model/
    model-790000.ckpt
  ema_diffusion_cifar10_model/
    model-790000.ckpt
  diffusion_lsun_bedroom_model/
    model-2388000.ckpt
  ema_diffusion_lsun_bedroom_model/
    model-2388000.ckpt
  diffusion_lsun_cat_model/
    model-1761000.ckpt
  ema_diffusion_lsun_cat_model/
    model-1761000.ckpt
  diffusion_lsun_church_model/
    model-4432000.ckpt
  ema_diffusion_lsun_church_model/
    model-4432000.ckpt

Sample TensorFlow models

To produce N samples from each of the pretrained TensorFlow models, run

python -c "import convert as m; m.sample_tf(N)"

Pass a list of model names as keyword argument which to specify which models to sample from. Samples will be saved in results/.

Owner
Patrick Esser
Patrick Esser
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape

THUNLP 23 Dec 31, 2022
Optimal space decomposition based-product quantization for approximate nearest neighbor search

Optimal space decomposition based-product quantization for approximate nearest neighbor search Abstract Product quantization(PQ) is an effective neare

Mylove 1 Nov 19, 2021
Evolutionary Scale Modeling (esm): Pretrained language models for proteins

Evolutionary Scale Modeling This repository contains code and pre-trained weights for Transformer protein language models from Facebook AI Research, i

Meta Research 1.6k Jan 09, 2023
Official repository for the paper F, B, Alpha Matting

FBA Matting Official repository for the paper F, B, Alpha Matting. This paper and project is under heavy revision for peer reviewed publication, and s

Marco Forte 404 Jan 05, 2023
Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

meshtalk This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite @inproceedings{richard2021mesht

Meta Research 221 Jan 06, 2023
This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

OpenSurfaces Segmentation UI This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool.

Sean Bell 66 Jul 11, 2022
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini!

ConversorDeMedidas_CapuccinoGelado Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini! Requirem

Arthur Ottoni Ribeiro 48 Nov 15, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

38 Aug 31, 2022
Creating Artificial Life with Reinforcement Learning

Although Evolutionary Algorithms have shown to result in interesting behavior, they focus on learning across generations whereas behavior could also be learned during ones lifetime.

Maarten Grootendorst 49 Dec 21, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration

GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration Stefan Abi-Karam*, Yuqi He*, Rishov Sarkar*, Lakshmi Sathidevi, Zihang Qiao, Co

Sharc-Lab 19 Dec 15, 2022
Histology images query (unsupervised)

110-1-NTU-DBME5028-Histology-images-query Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query

1 Jan 05, 2022
HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.

HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps. 中文介绍 Features Non-intrusive. Your iOS project does not need to be modi

mao2020 47 Oct 22, 2022