LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

Related tags

Deep LearningLF-YOLO
Overview

This project is based on ultralytics/yolov3.

LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. The related paper is available here.

Download

$ git clone https://github.com/lmomoy/LF-YOLO

Train

We provide multiple versions of LF-YOLO with different widths.

$ python train.py --data coco.yaml --cfg LF-YOLO.yaml      --weights '' --batch-size 1
                                         LF-YOLO-1.25.yaml                           1
                                         LF-YOLO-0.75.yaml                           1
                                         LF-YOLO-0.5.yaml                            1

Results

We test LF-YOLO on our weld defect image dataset. Other methods are trained and tested based on MMDetection.

Model size (pixels) mAP50test
params (M) FLOPS (B)
Cascasde-RCNN (ResNet50) (1333, 800) 90.0 68.9 243.2
Cascasde-RCNN (ResNet101) (1333, 800) 90.7 87.9 323.1
Faster-RCNN (ResNet50) (1333, 800) 90.1 41.1 215.4
Faster-RCNN (ResNet101) (1333, 800) 92.2 60.1 295.3
Dynamic-RCNN (ResNet50) (1333, 800) 90.3 41.1 215.4
RetinaNet (ResNet50) (1333, 800) 80.0 36.2 205.2
VFNet (ResNet50) (1333, 800) 87.0 32.5 197.8
VFNet (ResNet101) (1333, 800) 87.2 51.5 277.7
Reppoints (ResNet101) (1333, 800) 82.7 36.6 199.0
SSD300 (VGGNet) 300 88.1 24.0 30.6
YOLOv3 (Darknet52) 416 91.0 62.0 33.1
SSD (MobileNet v2) 300 82.3 3.1 0.7
YOLOv3 (MobileNet v2) 416 90.2 3.7 1.6
LF-YOLO-0.5 640 90.7 1.8 1.1
LF-YOLO 640 92.9 7.4 17.1

We test our model on public dataset MS COCO, and it also achieves competitive results.

Model size (pixels) mAP50test
params (M) FLOPS (B)
YOLOv3-tiny 640 34.8 8.8 13.2
YOLOv3 320 51.5 39.0 61.9
SSD 300 41.2 35.2 34.3
SSD 512 46.5 99.5 34.3
Faster R-CNN (VGG16) shorter size: 800 43.9 - 278.0
R-FCN (ResNet50) shorter size: 800 49.0 - 133.0
R-FCN (ResNet101) shorter size: 800 52.9 - 206.0
LF-YOLO 640 47.8 7.4 17.1

Requirements

Python 3.8 or later with all requirements.txt dependencies installed, including torch>=1.7. To install run:

$ pip install -r requirements.txt

Inference

$ python detect.py --source data/images --weights LF-YOLO.pt --conf 0.25
Code release for Convolutional Two-Stream Network Fusion for Video Action Recognition

Convolutional Two-Stream Network Fusion for Video Action Recognition

Christoph Feichtenhofer 676 Dec 31, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
unet-family: Ultimate version

unet-family: Ultimate version 基于之前my-unet代码,我整理出来了这一份终极版本unet-family,方便其他人阅读。 相比于之前的my-unet代码,代码分类更加规范,有条理 对于clone下来的代码不需要修改各种复杂繁琐的路径问题,直接就可以运行。 并且代码有

2 Sep 19, 2022
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context Code in both PyTorch and TensorFlow

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Jan 06, 2023
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia

Yunsong Zhou 51 Dec 14, 2022
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

73 Nov 30, 2022
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach

Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach This is the implementation of traffic prediction code in DTMP based on PyTo

chenxin 1 Dec 19, 2021
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
Extremely easy multi instancing software for minecraft speedrunning.

Easy Multi Extremely easy multi/single instancing software for minecraft speedrunning. A couple of goals of this project: Setup multi in minutes No fi

Duncan 8 Jul 16, 2022
RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.

[3DV 2021] We propose a new cascaded architecture for novel view synthesis, called RGBD-Net, which consists of two core components: a hierarchical depth regression network and a depth-aware generator

Phong Nguyen Ha 4 May 26, 2022
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v

1 Dec 29, 2021
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"

PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming

张宇 15 Jul 09, 2022
PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)

336 Nov 25, 2022
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".

Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y

hoshi-hiyouga 85 Dec 26, 2022