Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022

Related tags

Deep LearningLDL
Overview

LDL

Paper | Supplementary Material

Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution
Jie Liang*, Hui Zeng*, and Lei Zhang.
In CVPR 2022 (Oral Presentation).

Abstract

Single image super-resolution (SISR) with generative adversarial networks (GAN) has recently attracted increasing attention due to its potentials to generate rich details. However, the training of GAN is unstable, and it often introduces many perceptually unpleasant artifacts along with the generated details. In this paper, we demonstrate that it is possible to train a GAN-based SISR model which can stably generate perceptually realistic details while inhibiting visual artifacts. Based on the observation that the local statistics (e.g., residual variance) of artifact areas are often different from the areas of perceptually friendly details, we develop a framework to discriminate between GAN-generated artifacts and realistic details, and consequently generate an artifact map to regularize and stabilize the model training process. Our proposed locally discriminative learning (LDL) method is simple yet effective, which can be easily plugged in off-the-shelf SISR methods and boost their performance. Experiments demonstrate that LDL outperforms the state-of-the-art GAN based SISR methods, achieving not only higher reconstruction accuracy but also superior perceptual quality on both synthetic and real-world datasets.

Overall illustration of the LDL:

illustration

For more details, please refer to our paper.

Getting started

  • Clone this repo.
git clone https://github.com/csjliang/LDL
cd LDL
  • Install dependencies. (Python 3 + NVIDIA GPU + CUDA. Recommend to use Anaconda)
pip install -r requirements.txt
  • Prepare the training and testing dataset by following this instruction.
  • Prepare the pre-trained models by following this instruction.

Training

First, check and adapt the yml file options/train/LDL/train_Synthetic_LDL.yml (or options/train/LDL/train_Realworld_LDL.yml for real-world image super-resolution), then

  • Single GPU:
PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0 python basicsr/train.py -opt options/train/LDL/train_Synthetic_LDL.yml --auto_resume

or

PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0 python realesrgan/train.py -opt options/train/LDL/train_Realworld_LDL.yml --auto_resume
  • Distributed Training:
PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=5678 basicsr/train.py -opt options/train/LDL/train_Synthetic_LDL.yml --launcher pytorch --auto_resume

or

PYTHONPATH=":${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train/LDL/train_Realworld_LDL.yml --launcher pytorch --auto_resume

Training files (logs, models, training states and visualizations) will be saved in the directory ./experiments/{name}

Testing

First, check and adapt the yml file options/test/LDL/test_LDL_Synthetic_x4.yml (or options/test/LDL/test_LDL_Realworld_x4.yml for real-world image super-resolution), then

  • Calculate metrics and save visual results for synthetic tasks:
PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0 python basicsr/test.py -opt options/test/LDL/test_LDL_Synthetic_x4.yml
  • Save visual results for real-world image super-resolution:
PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0 python basicsr/test.py -opt options/test/LDL/test_LDL_Realworld_x4.yml

Evaluating files (logs and visualizations) will be saved in the directory ./results/{name}

The Training and testing steps for scale=2 are similar.

Get Quantitative Metrics

First, check and adapt the settings of the files in metrics, then (take PSNR as an example) run

PYTHONPATH="./:${PYTHONPATH}" python scripts/metrics/table_calculate_psnr_all.py

Other metrics are similar.

License

This project is released under the Apache 2.0 license.

Citation

@inproceedings{jie2022LDL,
  title={Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution},
  author={Liang, Jie and Zeng, Hui and Zhang, Lei},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2022}
}

Acknowledgement

This project is built based on the excellent BasicSR project.

Contact

Should you have any questions, please contact me via [email protected].

Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

20 May 28, 2022
Si Adek Keras is software VR dangerous object detection.

Si Adek Python Keras Sistem Informasi Deteksi Benda Berbahaya Keras Python. Version 1.0 Developed by Ananda Rauf Maududi. Developed date: 24 November

Ananda Rauf 1 Dec 21, 2021
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
Tensorflow/Keras Plug-N-Play Deep Learning Models Compilation

DeepBay This project was created with the objective of compile Machine Learning Architectures created using Tensorflow or Keras. The architectures mus

Whitman Bohorquez 4 Sep 26, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Facebook Research 366 Dec 28, 2022
PyQt6 configuration in yaml format providing the most simple script.

PyamlQt(ぴゃむるきゅーと) PyQt6 configuration in yaml format providing the most simple script. Requirements yaml PyQt6, ( PyQt5 ) Installation pip install Pya

Ar-Ray 7 Aug 15, 2022
Anonymize BLM Protest Images

Anonymize BLM Protest Images This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Us

Stanford Machine Learning Group 40 Oct 13, 2022
Boundary-preserving Mask R-CNN (ECCV 2020)

BMaskR-CNN This code is developed on Detectron2 Boundary-preserving Mask R-CNN ECCV 2020 Tianheng Cheng, Xinggang Wang, Lichao Huang, Wenyu Liu Video

Hust Visual Learning Team 178 Nov 28, 2022
Quantized models with python

quantized-network download .pth files to qmodels/: googlenet : https://download.

adreamxcj 2 Dec 28, 2021
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022