Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022

Related tags

Deep LearningLDL
Overview

LDL

Paper | Supplementary Material

Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution
Jie Liang*, Hui Zeng*, and Lei Zhang.
In CVPR 2022 (Oral Presentation).

Abstract

Single image super-resolution (SISR) with generative adversarial networks (GAN) has recently attracted increasing attention due to its potentials to generate rich details. However, the training of GAN is unstable, and it often introduces many perceptually unpleasant artifacts along with the generated details. In this paper, we demonstrate that it is possible to train a GAN-based SISR model which can stably generate perceptually realistic details while inhibiting visual artifacts. Based on the observation that the local statistics (e.g., residual variance) of artifact areas are often different from the areas of perceptually friendly details, we develop a framework to discriminate between GAN-generated artifacts and realistic details, and consequently generate an artifact map to regularize and stabilize the model training process. Our proposed locally discriminative learning (LDL) method is simple yet effective, which can be easily plugged in off-the-shelf SISR methods and boost their performance. Experiments demonstrate that LDL outperforms the state-of-the-art GAN based SISR methods, achieving not only higher reconstruction accuracy but also superior perceptual quality on both synthetic and real-world datasets.

Overall illustration of the LDL:

illustration

For more details, please refer to our paper.

Getting started

  • Clone this repo.
git clone https://github.com/csjliang/LDL
cd LDL
  • Install dependencies. (Python 3 + NVIDIA GPU + CUDA. Recommend to use Anaconda)
pip install -r requirements.txt
  • Prepare the training and testing dataset by following this instruction.
  • Prepare the pre-trained models by following this instruction.

Training

First, check and adapt the yml file options/train/LDL/train_Synthetic_LDL.yml (or options/train/LDL/train_Realworld_LDL.yml for real-world image super-resolution), then

  • Single GPU:
PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0 python basicsr/train.py -opt options/train/LDL/train_Synthetic_LDL.yml --auto_resume

or

PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0 python realesrgan/train.py -opt options/train/LDL/train_Realworld_LDL.yml --auto_resume
  • Distributed Training:
PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=5678 basicsr/train.py -opt options/train/LDL/train_Synthetic_LDL.yml --launcher pytorch --auto_resume

or

PYTHONPATH=":${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train/LDL/train_Realworld_LDL.yml --launcher pytorch --auto_resume

Training files (logs, models, training states and visualizations) will be saved in the directory ./experiments/{name}

Testing

First, check and adapt the yml file options/test/LDL/test_LDL_Synthetic_x4.yml (or options/test/LDL/test_LDL_Realworld_x4.yml for real-world image super-resolution), then

  • Calculate metrics and save visual results for synthetic tasks:
PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0 python basicsr/test.py -opt options/test/LDL/test_LDL_Synthetic_x4.yml
  • Save visual results for real-world image super-resolution:
PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0 python basicsr/test.py -opt options/test/LDL/test_LDL_Realworld_x4.yml

Evaluating files (logs and visualizations) will be saved in the directory ./results/{name}

The Training and testing steps for scale=2 are similar.

Get Quantitative Metrics

First, check and adapt the settings of the files in metrics, then (take PSNR as an example) run

PYTHONPATH="./:${PYTHONPATH}" python scripts/metrics/table_calculate_psnr_all.py

Other metrics are similar.

License

This project is released under the Apache 2.0 license.

Citation

@inproceedings{jie2022LDL,
  title={Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution},
  author={Liang, Jie and Zeng, Hui and Zhang, Lei},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2022}
}

Acknowledgement

This project is built based on the excellent BasicSR project.

Contact

Should you have any questions, please contact me via [email protected].

Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

meshtalk This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite @inproceedings{richard2021mesht

Meta Research 221 Jan 06, 2023
Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

THUNLP 75 Nov 02, 2022
Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
Direct LiDAR Odometry: Fast Localization with Dense Point Clouds

Direct LiDAR Odometry: Fast Localization with Dense Point Clouds DLO is a lightweight and computationally-efficient frontend LiDAR odometry solution w

VECTR at UCLA 369 Dec 30, 2022
Security evaluation module with onnx, pytorch, and SecML.

🚀 🐼 🔥 PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you

Maura Pintor 11 Apr 12, 2022
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation This repository contains the source code of our paper, ESPNet (acc

Sachin Mehta 515 Dec 13, 2022
Sentinel-1 vessel detection model used in the xView3 challenge

sar_vessel_detect Code for the AI2 Skylight team's submission in the xView3 competition (https://iuu.xview.us) for vessel detection in Sentinel-1 SAR

AI2 6 Sep 10, 2022
Robust Partial Matching for Person Search in the Wild

APNet for Person Search Introduction This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part

Yingji Zhong 36 Dec 18, 2022
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
Code release for "BoxeR: Box-Attention for 2D and 3D Transformers"

BoxeR By Duy-Kien Nguyen, Jihong Ju, Olaf Booij, Martin R. Oswald, Cees Snoek. This repository is an official implementation of the paper BoxeR: Box-A

Nguyen Duy Kien 111 Dec 07, 2022
D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim

16 Dec 25, 2022
A decent AI that solves daily Wordle puzzles. Works with different websites with similar wordlists,.

Wordle-AI A decent AI that solves daily "Wordle" puzzles. Works with different websites with similar wordlists. When prompted with "Word:" enter the w

Ethan 1 Feb 10, 2022
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022
Auxiliary data to the CHIIR paper Searching to Learn with Instructional Scaffolding

Searching to Learn with Instructional Scaffolding This is the data and analysis code for the paper "Searching to Learn with Instructional Scaffolding"

Arthur Câmara 2 Mar 02, 2022
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
Reproduction of Vision Transformer in Tensorflow2. Train from scratch and Finetune.

Vision Transformer(ViT) in Tensorflow2 Tensorflow2 implementation of the Vision Transformer(ViT). This repository is for An image is worth 16x16 words

sungjun lee 42 Dec 27, 2022
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022