This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Related tags

Deep Learninglpo
Overview

Learning to propose objects

This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun, CVPR 2015".

Dependencies:

  • c++11 compiler (gcc >= 4.7)
  • cmake
  • boost-python
  • python (2.7 or 3.1+ should both work)
  • numpy
  • libmatio (optional)
  • libpng, libjpeg
  • Eigen 3 (3.2.0 or newer)
  • OpenMP (optional but recommended)

Compilation:

Go to the top level directory

mkdir build
cd build
cmake .. -DCMAKE_BUILD_TYPE=Release -DDATA_DIR=/path/to/datasets -DUSE_PYTHON=ON
make -j9

Here "-DUSE_PYTHON" specifies that the python wrapper should be built (highly recommended). You can use python 2.7 by specifying "-DUSE_PYTHON=2", any other argument will try to build a python 3 wrapper.

The flag "-DDATA_DIR=/path/to/datasets" is optional and can point to a directory containing the VOC2012, VOC2007 or COCO datset. Specify this path if you want to train or evaluate LPO on those dataset.

"/path/to/datasets" can be any directory containing subdirectories:

  • 'VOC2012/ImageSets'
  • 'VOC2012/SegmentationClass',
  • 'VOC2012/Annotations'
  • 'COCO/train2014'
  • 'COCO/val2014'
  • ...

and files:

  • 'COCO/instances_train2014.json'
  • 'COCO/instances_val2014.json'.

The coco files can be downloaded from http://mscoco.org/, the PASCAL VOC dataset http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/index.html .

The code should compile and run fine on both Linux and Mac OS, let me know if you have any difficulty or find a bug. For Windows you're on your own.

Experiments

The code to reproduce most results in the paper is included here. All experiments should be run from the src directory.

To generate the main comparison in table 3 run:

bash eval_all.sh

To analyze a model like table 2 run:

python analyze_model.py path/to/model

To do the bounding box evaluation call:

python eval_box.py path/to/output_file path/to/model1 path/to/model2 path/to/model3 path/to/model4

This will create a binary file measuring number of proposals vs best overlap per object. You can then use the results/box.py script to generate the bounding box evaluation and produce the plots. For your convenience we included the precomputed results of many prior methods on VOC 2012 in results/box/*.dat.

Citation

If you're using this code in a scientific publication please cite:

@inproceedings{kk-lpo-15,
  author    = {Philipp Kr{\"{a}}henb{\"{u}}hl and
               Vladlen Koltun},
  title     = {Learning to Propose Objects},
  booktitle = {CVPR},
  year      = {2015},
}

License

All my code is published under a BSD license, so feel free to reuse and/or share it. There are some dependencies which are under different licenses and/or patented. All those dependencies are located in the external directory.

Owner
Philipp Krähenbühl
Philipp Krähenbühl
A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022
Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation"

Implicit-Semantic-Response-Alignment Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation" Prerequisites pyt

4 Dec 19, 2022
This is an open source library implementing hyperbox-based machine learning algorithms

hyperbox-brain is a Python open source toolbox implementing hyperbox-based machine learning algorithms built on top of scikit-learn and is distributed

Complex Adaptive Systems (CAS) Lab - University of Technology Sydney 21 Dec 14, 2022
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory

Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate

2 Mar 02, 2022
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
Learned model to estimate number of distinct values (NDV) of a population using a small sample.

Learned NDV estimator Learned model to estimate number of distinct values (NDV) of a population using a small sample. The model approximates the maxim

2 Nov 21, 2022
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022
This repository holds the code for the paper "Deep Conditional Gaussian Mixture Model forConstrained Clustering".

Deep Conditional Gaussian Mixture Model for Constrained Clustering. This repository holds the code for the paper Deep Conditional Gaussian Mixture Mod

17 Oct 30, 2022
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
Codes and Data Processing Files for our paper.

Code Scripts and Processing Files for EEG Sleep Staging Paper 1. Folder Tree ./src_preprocess (data preprocessing files for SHHS and Sleep EDF) sleepE

Chaoqi Yang 18 Dec 12, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 04, 2023
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022
PyTorch implementation of Self-supervised Contrastive Regularization for DG (SelfReg)

SelfReg PyTorch official implementation of Self-supervised Contrastive Regularization for Domain Generalization (SelfReg, https://arxiv.org/abs/2104.0

64 Dec 16, 2022
Facilitates implementing deep neural-network backbones, data augmentations

Introduction Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common wa

40 Dec 29, 2022
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
Collection of sports betting AI tools.

sports-betting sports-betting is a collection of tools that makes it easy to create machine learning models for sports betting and evaluate their perf

George Douzas 109 Dec 31, 2022
Plenoxels: Radiance Fields without Neural Networks, Code release WIP

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Alex Yu 2.3k Dec 30, 2022