Human Pose Detection on EdgeTPU

Overview

Coral PoseNet

Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for example, where someone’s elbow, shoulder or foot show up in an image. PoseNet does not recognize who is in an image, it is simply estimating where key body joints are.

This repo contains a set of PoseNet models that are quantized and optimized for use on Coral's Edge TPU, together with some example code to shows how to run it on a camera stream.

Why PoseNet ?

Pose estimation has many uses, from interactive installations that react to the body to augmented reality, animation, fitness uses, and more. We hope the accessibility of this model inspires more developers and makers to experiment and apply pose detection to their own unique projects, to demonstrate how machine learning can be deployed in ways that are anonymous and private.

How does it work ?

At a high level pose estimation happens in two phases:

  1. An input RGB image is fed through a convolutional neural network. In our case this is a MobileNet V1 architecture. Instead of a classification head however, there is a specialized head which produces a set of heatmaps (one for each kind of key point) and some offset maps. This step runs on the EdgeTPU. The results are then fed into step 2)

  2. A special multi-pose decoding algorithm is used to decode poses, pose confidence scores, keypoint positions, and keypoint confidence scores. Note that unlike in the TensorflowJS version we have created a custom OP in Tensorflow Lite and appended it to the network graph itself. This CustomOP does the decoding (on the CPU) as a post processing step. The advantage is that we don't have to deal with the heatmaps directly and when we then call this network through the Coral Python API we simply get a series of keypoints from the network.

If you're interested in the gory details of the decoding algorithm and how PoseNet works under the hood, I recommend you take a look at the original research paper or this medium post whihch describes the raw heatmaps produced by the convolutional model.

Important concepts

Pose: at the highest level, PoseNet will return a pose object that contains a list of keypoints and an instance-level confidence score for each detected person.

Keypoint: a part of a person’s pose that is estimated, such as the nose, right ear, left knee, right foot, etc. It contains both a position and a keypoint confidence score. PoseNet currently detects 17 keypoints illustrated in the following diagram:

pose keypoints

Keypoint Confidence Score: this determines the confidence that an estimated keypoint position is accurate. It ranges between 0.0 and 1.0. It can be used to hide keypoints that are not deemed strong enough.

Keypoint Position: 2D x and y coordinates in the original input image where a keypoint has been detected.

Examples in this repo

NOTE: PoseNet relies on the latest Pycoral API, tflite_runtime API, and libedgetpu1-std or libedgetpu1-max:

Please also update your system before running these examples. For more information on updating see:

To install all other requirements for third party libraries, simply run

sh install_requirements.sh

simple_pose.py

A minimal example that simply downloads an image, and prints the pose keypoints.

python3 simple_pose.py

pose_camera.py

A camera example that streams the camera image through posenet and draws the pose on top as an overlay. This is a great first example to run to familiarize yourself with the network and its outputs.

Run a simple demo like this:

python3 pose_camera.py

If the camera and monitor are both facing you, consider adding the --mirror flag:

python3 pose_camera.py --mirror

In this repo we have included 3 posenet model files for differnet input resolutions. The larger resolutions are slower of course, but allow a wider field of view, or further-away poses to be processed correctly.

posenet_mobilenet_v1_075_721_1281_quant_decoder_edgetpu.tflite
posenet_mobilenet_v1_075_481_641_quant_decoder_edgetpu.tflite
posenet_mobilenet_v1_075_353_481_quant_decoder_edgetpu.tflite

You can change the camera resolution by using the --res parameter:

python3 pose_camera.py --res 480x360  # fast but low res
python3 pose_camera.py --res 640x480  # default
python3 pose_camera.py --res 1280x720 # slower but high res

anonymizer.py

A fun little app that demonstrates how Coral and PoseNet can be used to analyze human behavior in an anonymous and privacy-preserving way.

Posenet converts an image of a human into a mere skeleton which captures its position and movement over time, but discards any precisely identifying features and the original camera image. Because Coral devices run all the image analysis locally, the actual image is never streamed anywhere and is immediately discarded. The poses can be safely stored or analysed.

For example a store owner may want to study the bahavior of customers as they move through the store, in order to optimize flow and improve product placement. A museum may want to track which areas are most busy, at which times such as to give guidance which exhibits may currently have the shortest waiting times.

With Coral this is possible without recording anybody's image directly or streaming data to a cloud service - instead the images are immediately discarded.

The anaonymizer is a small app that demonstrates this is a fun way. To use the anonymizer set up your camera in a sturdy position. Lauch the app and walk out of the image. This demo waits until no one is in the frame, then stores the 'background' image. Now, step back in. You'll see your current pose overlayed over a static image of the background.

python3 anonymizer.py

(If the camera and monitor are both facing you, consider adding the --mirror flag.)

video of three people interacting with the anonymizer demo

synthesizer.py

This demo allows people to control musical synthesizers with their arms. Up to 3 people are each assigned a different instrument and octave, and control the pitch with their right wrists and the volume with their left wrists.

You'll need to install FluidSynth and a General Midi SoundFont:

apt install fluidsynth fluid-soundfont-gm
pip3 install pyfluidsynth

Now you can run the demo like this:

python3 synthesizer.py

The PoseEngine class

The PoseEngine class (defined in pose_engine.py) allows easy access to the PoseNet network from Python, using the EdgeTPU API.

You simply initialize the class with the location of the model .tflite file and then call DetectPosesInImage, passing a numpy object that contains the image. The numpy object should be in int8, [Y,X,RGB] format.

A minimal example might be:

from tflite_runtime.interpreter import Interpreter
import os
import numpy as np
from PIL import Image
from PIL import ImageDraw
from pose_engine import PoseEngine


os.system('wget https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/'
          'Hindu_marriage_ceremony_offering.jpg/'
          '640px-Hindu_marriage_ceremony_offering.jpg -O /tmp/couple.jpg')
pil_image = Image.open('/tmp/couple.jpg').convert('RGB')
engine = PoseEngine(
    'models/mobilenet/posenet_mobilenet_v1_075_481_641_quant_decoder_edgetpu.tflite')
poses, _ = engine.DetectPosesInImage(pil_image)

for pose in poses:
    if pose.score < 0.4: continue
    print('\nPose Score: ', pose.score)
    for label, keypoint in pose.keypoints.items():
        print('  %-20s x=%-4d y=%-4d score=%.1f' %
              (label, keypoint.point[0], keypoint.point[1], keypoint.score))

To try this, run

python3 simple_pose.py

And you should see an output like this:

Inference time: 14 ms

Pose Score:  0.60698134
  NOSE                 x=211  y=152  score=1.0
  LEFT_EYE             x=224  y=138  score=1.0
  RIGHT_EYE            x=199  y=136  score=1.0
  LEFT_EAR             x=245  y=135  score=1.0
  RIGHT_EAR            x=183  y=129  score=0.8
  LEFT_SHOULDER        x=269  y=169  score=0.7
  RIGHT_SHOULDER       x=160  y=173  score=1.0
  LEFT_ELBOW           x=281  y=255  score=0.6
  RIGHT_ELBOW          x=153  y=253  score=1.0
  LEFT_WRIST           x=237  y=333  score=0.6
  RIGHT_WRIST          x=163  y=305  score=0.5
  LEFT_HIP             x=256  y=318  score=0.2
  RIGHT_HIP            x=171  y=311  score=0.2
  LEFT_KNEE            x=221  y=342  score=0.3
  RIGHT_KNEE           x=209  y=340  score=0.3
  LEFT_ANKLE           x=188  y=408  score=0.2
  RIGHT_ANKLE          x=189  y=410  score=0.2

Owner
google-coral
Open source projects for coral.ai
google-coral
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"

CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation

106 Jan 04, 2023
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems

The SLIDE package contains the source code for reproducing the main experiments in this paper. Dataset The Datasets can be downloaded in Amazon-

Intel Labs 72 Dec 16, 2022
TinyML Cookbook, published by Packt

TinyML Cookbook This is the code repository for TinyML Cookbook, published by Packt. Author: Gian Marco Iodice Publisher: Packt About the book This bo

Packt 93 Dec 29, 2022
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
3D cascade RCNN for object detection on point cloud

3D Cascade RCNN This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds. We designed a 3D object detection model

Qi Cai 22 Dec 02, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
YouRefIt: Embodied Reference Understanding with Language and Gesture

YouRefIt: Embodied Reference Understanding with Language and Gesture YouRefIt: Embodied Reference Understanding with Language and Gesture by Yixin Che

16 Jul 11, 2022
Vrcwatch - Supply the local time to VRChat as Avatar Parameters through OSC

English: README-EN.md VRCWatch VRCWatch は、VRChat 内のアバター向けに現在時刻を送信するためのプログラムです。 使

Kosaki Mezumona 17 Nov 30, 2022
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021)

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) Overview Prerequisites Linux Pytho

Shaojie Li 34 Mar 31, 2022
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Imanol Schlag 18 Oct 12, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
Pytorch cuda extension of grid_sample1d

Grid Sample 1d pytorch cuda extension of grid sample 1d. Since pytorch only supports grid sample 2d/3d, I extend the 1d version for efficiency. The fo

lyricpoem 24 Dec 03, 2022
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022