Video Corpus Moment Retrieval with Contrastive Learning (SIGIR 2021)

Overview

Video Corpus Moment Retrieval with Contrastive Learning

PyTorch implementation for the paper "Video Corpus Moment Retrieval with Contrastive Learning" (SIGIR 2021, long paper): SIGIR version, ArXiv version.

model_overview

The codes are modified from TVRetrieval.

Prerequisites

  • python 3.x with pytorch (1.7.0), torchvision, transformers, tensorboard, tqdm, h5py, easydict
  • cuda, cudnn

If you have Anaconda installed, the conda environment of ReLoCLNet can be built as follows (take python 3.7 as an example):

conda create --name reloclnet python=3.7
conda activate reloclnet
conda install -c anaconda cudatoolkit cudnn  # ignore this if you already have cuda installed
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorch
conda install -c anaconda h5py=2.9.0
conda install -c conda-forge transformers tensorboard tqdm easydict

The conda environment of TVRetrieval also works.

Getting started

  1. Clone this repository
$ git clone [email protected]:IsaacChanghau/ReLoCLNet.git
$ cd ReLoCLNet
  1. Download features

For the features of TVR dataset, please download tvr_feature_release.tar.gz (link is copied from TVRetrieval#prerequisites) and extract it to the data directory:

$ tar -xf path/to/tvr_feature_release.tar.gz -C data

This link may be useful for you to directly download Google Drive files using wget. Please refer TVRetrieval#prerequisites for more details about how the features are extracted if you are interested.

  1. Add project root to PYTHONPATH (Note that you need to do this each time you start a new session.)
$ source setup.sh

Training and Inference

TVR dataset

# train, refer `method_tvr/scripts/train.sh` and `method_tvr/config.py` more details about hyper-parameters
$ bash method_tvr/scripts/train.sh tvr video_sub_tef resnet_i3d --exp_id reloclnet
# inference
# the model directory placed in method_tvr/results/tvr-video_sub_tef-reloclnet-*
# change the MODEL_DIR_NAME as tvr-video_sub_tef-reloclnet-*
# SPLIT_NAME: [val | test]
$ bash method_tvr/scripts/inference.sh MODEL_DIR_NAME SPLIT_NAME

For more details about evaluation and submission, please refer TVRetrieval#training-and-inference.

Citation

If you feel this project helpful to your research, please cite our work.

@inproceedings{zhang2021video,
	author = {Zhang, Hao and Sun, Aixin and Jing, Wei and Nan, Guoshun and Zhen, Liangli and Zhou, Joey Tianyi and Goh, Rick Siow Mong},
	title = {Video Corpus Moment Retrieval with Contrastive Learning},
	year = {2021},
	isbn = {9781450380379},
	publisher = {Association for Computing Machinery},
	address = {New York, NY, USA},
	url = {https://doi.org/10.1145/3404835.3462874},
	doi = {10.1145/3404835.3462874},
	booktitle = {Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval},
	pages = {685–695},
	numpages = {11},
	location = {Virtual Event, Canada},
	series = {SIGIR '21}
}

TODO

  • Upload codes for ActivityNet Captions dataset
Owner
ZHANG HAO
Research engineer at A*STAR and Ph.D. (CS) candidates at NTU
ZHANG HAO
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
Show-attend-and-tell - TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
The second project in Python course on FCC

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Denise T 1 Dec 13, 2021
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations"

Robust Counterfactual Explanations This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations". I

Marco 5 Dec 20, 2022
A transformer which can randomly augment VOC format dataset (both image and bbox) online.

VocAug It is difficult to find a script which can augment VOC-format dataset, especially the bbox. Or find a script needs complex requirements so it i

Coder.AN 1 Mar 05, 2022
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
Code & Data for Enhancing Photorealism Enhancement

Code & Data for Enhancing Photorealism Enhancement

Intel ISL (Intel Intelligent Systems Lab) 1.1k Jan 08, 2023
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
Fully Convolutional DenseNets for semantic segmentation.

Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense

485 Nov 26, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
Simple image captioning model - CLIP prefix captioning.

Simple image captioning model - CLIP prefix captioning.

688 Jan 04, 2023
Learning Confidence for Out-of-Distribution Detection in Neural Networks

Learning Confidence Estimates for Neural Networks This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detectio

235 Jan 05, 2023
Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps[AAAI2021]

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps Here is the code for ssbassline model. We also provide OCR results/features/mode

ZephyrZhuQi 51 Nov 18, 2022
A framework for analyzing computer vision models with simulated data

3DB: A framework for analyzing computer vision models with simulated data Paper Quickstart guide Blog post Installation Follow instructions on: https:

3DB 112 Jan 01, 2023
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023