A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

Related tags

Deep LearningELD
Overview

ELD

The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) version "Physics-based Noise Modeling for Extreme Low-light Photography". Interested readers are also referred to an insightful Note about this work in Zhihu (Chinese).

News

  • 2022/01/08: Major Update: Release the training code and other related items (including synthetic datasets, customized rawpy, calibrated camera noise parameters, baseline noise models, calibrated SonyA7S2 camera response function (CRF) and a modern implementation of EMoR radiometric calibration method) to accelerate further research!
  • 2022/01/05: Replace the released ELD dataset by my local version of the dataset. We thank @fenghansen for pointing this out. Please refer to this issue for more details.
  • 2021/08/05: The comprehensive version of this work was accepted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
  • 2020/07/16: Release the ELD dataset and our pretrained models at GoogleDrive and Baidudisk (0lby)

Highlights

  • We present a highly accurate noise formation model based on the characteristics of CMOS photosensors, thereby enabling us to synthesize realistic samples that better match the physics of image formation process.

  • To study the generalizability of a neural network trained with existing schemes, we introduce a new Extreme Low-light Denoising (ELD) dataset that covers four representative modern camera devices for evaluation purposes only. The image capture setup and example images are shown as below:

  • By training only with our synthetic data, we demonstrate a convolutional neural network can compete with or sometimes even outperform the network trained with paired real data under extreme low-light settings. The denoising results of networks trained with multiple schemes, i.e. 1) synthetic data generated by the poissonian-gaussian noise model, 2) paired read data of SID dataset and 3) synthetic data generated by our proposed noise model, are displayed as follows:

Prerequisites

  • Python >=3.6, PyTorch >= 1.6
  • Requirements: opencv-python, tensorboardX, lmdb, rawpy, torchinterp1d
  • Platforms: Ubuntu 16.04, cuda-10.1

Notice this codebase relies on my own customized rawpy, which provides more functionalities than the official one. This is released together with our datasets and the pretrained models. To build rawpy from source, please first compile and install the LibRaw library following the official instructions, then type pip install -e . in the rawpy directory.

Quick Start

Due to the business license, we are unable to to provide the noise model as well as the calibration method. Instead, we release our collected ELD dataset and our pretrained models to facilitate future research.

To reproduce our results presented in the paper (Table 1 and 2), please take a look at scripts/test_SID.sh and scripts/test_ELD.sh

Update: (2022-01-08) We release the training code and the synthetic datasets per the users' requests. The training scripts and the user instructions can be found in scripts/train.sh. Additionally, we provide the baseline noise models (G/G+P/G+P*) and the calibrated noise parameters for all cameras of ELD for training (see noise.py and train_syn.py), which could serve as a starting point to develop your own noise model.

We use lmdb to prepare datasets, please refer to util/lmdb_data.py to see how we generate datasets from SID. We also provide a new implementation of a classic radiometric calibration method EMoR, and utilize it to calibrate the CRF of SonyA7S2, which could be further used to simulate realistic on-board ISP as in the commercial SonyA7S2 camera.

ELD Dataset

The dataset capture protocol is shown as follow:

We choose three ISO settings (800, 1600, 3200) and four low light factors (x1, x10, x100, x200) to capture the dataset (x1/x10 is not used in our paper). Image ids 1, 6, 11, 16 represent the long-exposure reference images. Please refer to ELDEvalDataset class in data/sid_dataset.py for more details.

Citation

If you find our code helpful in your research or work please cite our paper.

@inproceedings{wei2020physics,
  title={A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising},
  author={Wei, Kaixuan and Fu, Ying and Yang, Jiaolong and Huang, Hua},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  year={2020},
}

@article{wei2021physics,
  title={Physics-based Noise Modeling for Extreme Low-light Photography},
  author={Wei, Kaixuan and Fu, Ying and Zheng, Yinqiang and Yang, Jiaolong},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021},
  publisher={IEEE}
}

Contact

If you find any problem, please feel free to contact me (kxwei at princeton.edu kaixuan_wei at bit.edu.cn). A brief self-introduction (including your name, affiliation and position) is required, if you would like to get an in-depth help from me. I'd be glad to talk with you if more information (e.g. your personal website link) is attached. Note I would not reply to any impolite/aggressive email that violates the above criteria.

Owner
Kaixuan Wei
PhD student at Princeton University. Previously I obtained BS and MS degrees from BIT and ever did research at Cambridge and MSRA.
Kaixuan Wei
Data from "HateCheck: Functional Tests for Hate Speech Detection Models" (Röttger et al., ACL 2021)

In this repo, you can find the data from our ACL 2021 paper "HateCheck: Functional Tests for Hate Speech Detection Models". "test_suite_cases.csv" con

Paul Röttger 43 Nov 11, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
Xintao 1.4k Dec 25, 2022
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro

Tessellate Imaging 507 Dec 04, 2022
2D Human Pose estimation using transformers. Implementation in Pytorch

PE-former: Pose Estimation Transformer Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challe

Panteleris Paschalis 23 Oct 17, 2022
Training PSPNet in Tensorflow. Reproduce the performance from the paper.

Training Reproduce of PSPNet. (Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with support

Li Xuhong 126 Jul 13, 2022
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Fernando Pérez-García 1.6k Jan 06, 2023
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
Official pytorch implementation of the AAAI 2021 paper Semantic Grouping Network for Video Captioning

Semantic Grouping Network for Video Captioning Hobin Ryu, Sunghun Kang, Haeyong Kang, and Chang D. Yoo. AAAI 2021. [arxiv] Environment Ubuntu 16.04 CU

Hobin Ryu 43 Nov 25, 2022
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o

Yang Song 84 Dec 12, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
TuckER: Tensor Factorization for Knowledge Graph Completion

TuckER: Tensor Factorization for Knowledge Graph Completion This codebase contains PyTorch implementation of the paper: TuckER: Tensor Factorization f

Ivana Balazevic 296 Dec 06, 2022
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023
Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

SSL_OSC Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

zaixizhang 2 May 14, 2022
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023