Training PSPNet in Tensorflow. Reproduce the performance from the paper.

Overview

Training Reproduce of PSPNet.

(Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with supporting Sync Batch Norm, see https://github.com/hszhao/semseg.)

(Updated 2019/02/26. A major change of code structure. For the version before, checkout v0.9 https://github.com/holyseven/PSPNet-TF-Reproduce/tree/v0.9.)

This is an implementation of PSPNet (from training to test) in pure Tensorflow library (tested on TF1.12, Python 3).

  • Supported Backbones: ResNet-V1-50, ResNet-V1-101 and other ResNet-V1s can be easily added.
  • Supported Databases: ADE20K, SBD (Augmented Pascal VOC) and Cityscapes.
  • Supported Modes: training, validation and inference with multi-scale inputs.
  • More things: L2-SP regularization and sync batch normalization implementation.

L2-SP Regularization

L2-SP regularization is a variant of L2 regularization. Instead of the origin like L2 does, L2-SP sets the pre-trained model as reference, just like (w - w0)^2, where w0 is the pre-trained model. Simple but effective. More details about L2-SP can be found in the paper and the code.

If you find the L2-SP useful for your research (not limited in image segmentation), please consider citing our work:

@inproceedings{li2018explicit,
  author    = {Li, Xuhong and Grandvalet, Yves and Davoine, Franck},
  title     = {Explicit Inductive Bias for Transfer Learning with Convolutional Networks},
  booktitle={International Conference on Machine Learning (ICML)},
   pages     = {2830--2839},
  year      = {2018}
}

Sync Batch Norm

When concerning image segmentation, batch size is usually limited. Small batch size will make the gradients instable and harm the performance, especially for batch normalization layers. Multi-GPU settings by default does not help because the statistics in batch normalization layer are computed independently within each GPU. More discussion can be found here and here.

This repo resolves this problem in pure python and pure Tensorflow by simply using a list as input. The main idea is located in model/utils_mg.py

I do not know if this is the first implementation of sync batch norm in Tensorflow, but there is already an implementation in PyTorch and some applications.

Update: There is other implementation that uses NCCL to gather statistics across GPUs, see in tensorpack. However, TF1.1 does not support gradients passing by nccl_all_reduce. Plus, ppc64le with tf1.10, cuda9.0 and nccl1.3.5 was not able to run this code. No idea why, and do not want to spend a lot of time on this. Maybe nccl2 can solve this.

Results

Numerical Results

  • Random scaling for all
  • Random rotation for SBD
  • SS/MS on validation set
  • Welcome to correct and fill in the table
Backbones L2 L2-SP
Cityscapes (train set: 3K) ResNet-50 76.9/? 77.9/?
ResNet-101 77.9/? 78.6/?
Cityscapes (coarse + train set: 20K + 3K) ResNet-50
ResNet-101 80.0/80.9 80.1/81.2*
SBD ResNet-50 76.5/? 76.6/?
ResNet-101 77.5/79.2 78.5/79.9
ADE20K ResNet-50 41.92/43.09
ResNet-101 42.80/?

*This model gets 80.3 without post-processing methods on Cityscapes test set (1525).

Qualitative Results on Cityscapes

Devil Details

Training and Evaluation

Download the databases with the links: ADE20K, SBD (Augmented Pascal VOC) and Cityscapes.

Prepare the database for Cityscapes by generating *labelTrainIds.png images with createTrainIdLabelImgs, and then change the code in database/reader.py or move undersired images to other directory.

Download pretrained models.

cd z_pretrained_weights
sh download_resnet_v1_101.sh

A script of training resnet-50 on ADE20K, getting around 41.92 mIoU scores (with single-scale test):

python ./run.py --network 'resnet_v1_50' --visible_gpus '0,1' --reader_method 'queue' --lrn_rate 0.01 --weight_decay_mode 0 --weight_decay_rate 0.0001 --weight_decay_rate2 0.001 --database 'ADE' --subsets_for_training 'train' --batch_size 8 --train_image_size 480 --snapshot 30000 --train_max_iter 90000 --test_image_size 480 --random_rotate 0 --fine_tune_filename './z_pretrained_weights/resnet_v1_50.ckpt'

Test and Infer

Test with multi-scale (set batch_size as large as you can to speed up).

python predict.py --visible_gpus '0' --network 'resnet_v1_101' --database 'ADE' --weights_ckpt './log/ADE/PSP-resnet_v1_101-gpu_num2-batch_size8-lrn_rate0.01-random_scale1-random_rotate1-480-60000-train-1-0.0001-0.001-0-0-1-1/snapshot/model.ckpt-60000' --test_subset 'val' --test_image_size 480 --batch_size 8 --ms 1 --mirror 1

Infer one image (with multi-scale).

python demo_infer.py --database 'Cityscapes' --network 'resnet_v1_101' --weights_ckpt './log/Cityscapes/old/model.ckpt-50000' --test_image_size 864 --batch_size 4 --ms 1

Uncertainties for Training Details:

  1. (Cityscapes only) Whether finely labeled data in the first training stage should be involved?
  2. (Cityscapes only) Whether the (base) learning rate should be reduced in the second training stage?
  3. Whether logits should be resized to original size before computing the loss?
  4. Whether new layers should receive larger learning rate?
  5. About weired padding behavior of tf.image.resize_images(). Whether the align_corners=True should be set?
  6. What is optimal hyperparameter of decay for statistics of batch normalization layers? (0.9, 0.95, 0.9997)
  7. may be more but not sure how much these little changes can effect the results ...
  8. Welcome to discuss !

Change Log

26 Febuary, 2019

  • Code structure: on-the-fly evaluation during training.
  • Code structure: wrapping of the model.
  • Add tf.data support, but with queue-based reader is faster.
  • print results using python utils.py in experiment_manager dir.
  • The default environment is Python 3 and TF1.12. OpenCV is needed for predicting and demo_infer.
  • The previous version becomes a branch of this repo named as v0.9.

External links

Pyramid Scene Parsing Network paper and official github.

Owner
Li Xuhong
Researcher at Baidu Research, focus on interpretable deep learning and transfer learning.
Li Xuhong
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
CVPR 2020 oral paper: Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax.

Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax ⚠️ Latest: Current repo is a complete version. But we delet

FishYuLi 341 Dec 23, 2022
This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021.

PyTorch implementation of DAQ This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021. For more informatio

CV Lab @ Yonsei University 36 Nov 04, 2022
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
Approaches to modeling terrain and maps in python

topography 🌎 Contains different approaches to modeling terrain and topographic-style maps in python Features Inverse Distance Weighting (IDW) A given

John Gutierrez 1 Aug 10, 2022
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram

Qilei Li 66 Nov 03, 2022
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
YKKDetector For Python

YKKDetector OpenCVを利用した機械学習データをもとに、VRChatのスクリーンショットなどからYKKさん(もとい「幽狐族のお姉様」)を検出できるソフトウェアです。 マニュアル こちらから実行環境のセットアップから解説する詳細なマニュアルをご覧いただけます。 ライセンス 本ソフトウェア

あんふぃとらいと 5 Dec 07, 2021
Model of an AI powered sign language interpreter.

TEXT AND SPEECH TO SIGN LANGUAGE. A web application which takes in text or live audio speech recording as input, converts and displays the relevant Si

Mark Gatere 4 Mar 30, 2022
Benchmarking the robustness of Spatial-Temporal Models

Benchmarking the robustness of Spatial-Temporal Models This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal

Yi Chenyu Ian 15 Dec 16, 2022
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

10 Mar 16, 2022
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
Vrcwatch - Supply the local time to VRChat as Avatar Parameters through OSC

English: README-EN.md VRCWatch VRCWatch は、VRChat 内のアバター向けに現在時刻を送信するためのプログラムです。 使

Kosaki Mezumona 17 Nov 30, 2022
A motion detection system with RaspberryPi, OpenCV, Python

Human Detection System using Raspberry Pi Functionality Activates a relay on detecting motion. You may need following components to get the expected R

Omal Perera 55 Dec 04, 2022
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022