Training PSPNet in Tensorflow. Reproduce the performance from the paper.

Overview

Training Reproduce of PSPNet.

(Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with supporting Sync Batch Norm, see https://github.com/hszhao/semseg.)

(Updated 2019/02/26. A major change of code structure. For the version before, checkout v0.9 https://github.com/holyseven/PSPNet-TF-Reproduce/tree/v0.9.)

This is an implementation of PSPNet (from training to test) in pure Tensorflow library (tested on TF1.12, Python 3).

  • Supported Backbones: ResNet-V1-50, ResNet-V1-101 and other ResNet-V1s can be easily added.
  • Supported Databases: ADE20K, SBD (Augmented Pascal VOC) and Cityscapes.
  • Supported Modes: training, validation and inference with multi-scale inputs.
  • More things: L2-SP regularization and sync batch normalization implementation.

L2-SP Regularization

L2-SP regularization is a variant of L2 regularization. Instead of the origin like L2 does, L2-SP sets the pre-trained model as reference, just like (w - w0)^2, where w0 is the pre-trained model. Simple but effective. More details about L2-SP can be found in the paper and the code.

If you find the L2-SP useful for your research (not limited in image segmentation), please consider citing our work:

@inproceedings{li2018explicit,
  author    = {Li, Xuhong and Grandvalet, Yves and Davoine, Franck},
  title     = {Explicit Inductive Bias for Transfer Learning with Convolutional Networks},
  booktitle={International Conference on Machine Learning (ICML)},
   pages     = {2830--2839},
  year      = {2018}
}

Sync Batch Norm

When concerning image segmentation, batch size is usually limited. Small batch size will make the gradients instable and harm the performance, especially for batch normalization layers. Multi-GPU settings by default does not help because the statistics in batch normalization layer are computed independently within each GPU. More discussion can be found here and here.

This repo resolves this problem in pure python and pure Tensorflow by simply using a list as input. The main idea is located in model/utils_mg.py

I do not know if this is the first implementation of sync batch norm in Tensorflow, but there is already an implementation in PyTorch and some applications.

Update: There is other implementation that uses NCCL to gather statistics across GPUs, see in tensorpack. However, TF1.1 does not support gradients passing by nccl_all_reduce. Plus, ppc64le with tf1.10, cuda9.0 and nccl1.3.5 was not able to run this code. No idea why, and do not want to spend a lot of time on this. Maybe nccl2 can solve this.

Results

Numerical Results

  • Random scaling for all
  • Random rotation for SBD
  • SS/MS on validation set
  • Welcome to correct and fill in the table
Backbones L2 L2-SP
Cityscapes (train set: 3K) ResNet-50 76.9/? 77.9/?
ResNet-101 77.9/? 78.6/?
Cityscapes (coarse + train set: 20K + 3K) ResNet-50
ResNet-101 80.0/80.9 80.1/81.2*
SBD ResNet-50 76.5/? 76.6/?
ResNet-101 77.5/79.2 78.5/79.9
ADE20K ResNet-50 41.92/43.09
ResNet-101 42.80/?

*This model gets 80.3 without post-processing methods on Cityscapes test set (1525).

Qualitative Results on Cityscapes

Devil Details

Training and Evaluation

Download the databases with the links: ADE20K, SBD (Augmented Pascal VOC) and Cityscapes.

Prepare the database for Cityscapes by generating *labelTrainIds.png images with createTrainIdLabelImgs, and then change the code in database/reader.py or move undersired images to other directory.

Download pretrained models.

cd z_pretrained_weights
sh download_resnet_v1_101.sh

A script of training resnet-50 on ADE20K, getting around 41.92 mIoU scores (with single-scale test):

python ./run.py --network 'resnet_v1_50' --visible_gpus '0,1' --reader_method 'queue' --lrn_rate 0.01 --weight_decay_mode 0 --weight_decay_rate 0.0001 --weight_decay_rate2 0.001 --database 'ADE' --subsets_for_training 'train' --batch_size 8 --train_image_size 480 --snapshot 30000 --train_max_iter 90000 --test_image_size 480 --random_rotate 0 --fine_tune_filename './z_pretrained_weights/resnet_v1_50.ckpt'

Test and Infer

Test with multi-scale (set batch_size as large as you can to speed up).

python predict.py --visible_gpus '0' --network 'resnet_v1_101' --database 'ADE' --weights_ckpt './log/ADE/PSP-resnet_v1_101-gpu_num2-batch_size8-lrn_rate0.01-random_scale1-random_rotate1-480-60000-train-1-0.0001-0.001-0-0-1-1/snapshot/model.ckpt-60000' --test_subset 'val' --test_image_size 480 --batch_size 8 --ms 1 --mirror 1

Infer one image (with multi-scale).

python demo_infer.py --database 'Cityscapes' --network 'resnet_v1_101' --weights_ckpt './log/Cityscapes/old/model.ckpt-50000' --test_image_size 864 --batch_size 4 --ms 1

Uncertainties for Training Details:

  1. (Cityscapes only) Whether finely labeled data in the first training stage should be involved?
  2. (Cityscapes only) Whether the (base) learning rate should be reduced in the second training stage?
  3. Whether logits should be resized to original size before computing the loss?
  4. Whether new layers should receive larger learning rate?
  5. About weired padding behavior of tf.image.resize_images(). Whether the align_corners=True should be set?
  6. What is optimal hyperparameter of decay for statistics of batch normalization layers? (0.9, 0.95, 0.9997)
  7. may be more but not sure how much these little changes can effect the results ...
  8. Welcome to discuss !

Change Log

26 Febuary, 2019

  • Code structure: on-the-fly evaluation during training.
  • Code structure: wrapping of the model.
  • Add tf.data support, but with queue-based reader is faster.
  • print results using python utils.py in experiment_manager dir.
  • The default environment is Python 3 and TF1.12. OpenCV is needed for predicting and demo_infer.
  • The previous version becomes a branch of this repo named as v0.9.

External links

Pyramid Scene Parsing Network paper and official github.

Owner
Li Xuhong
Researcher at Baidu Research, focus on interpretable deep learning and transfer learning.
Li Xuhong
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
Semantic Segmentation Architectures Implemented in PyTorch

pytorch-semseg Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures i

Meet Shah 3.3k Dec 29, 2022
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Xintao 593 Jan 03, 2023
Transferable Unrestricted Attacks, which won 1st place in CVPR’21 Security AI Challenger: Unrestricted Adversarial Attacks on ImageNet.

Transferable Unrestricted Adversarial Examples This is the PyTorch implementation of the Arxiv paper: Towards Transferable Unrestricted Adversarial Ex

equation 16 Dec 29, 2022
A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

Biomedical Computer Vision @ Uniandes 52 Dec 19, 2022
9th place solution

AllDataAreExt-Galixir-Kaggle-HPA-2021-Solution Team Members Qishen Ha is Master of Engineering from the University of Tokyo. Machine Learning Engineer

daishu 5 Nov 18, 2021
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
Optimal space decomposition based-product quantization for approximate nearest neighbor search

Optimal space decomposition based-product quantization for approximate nearest neighbor search Abstract Product quantization(PQ) is an effective neare

Mylove 1 Nov 19, 2021
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022
Source code for PairNorm (ICLR 2020)

PairNorm Official pytorch source code for PairNorm paper (ICLR 2020) This code requires pytorch_geometric=1.3.2 usage For SGC, we use original PairNo

62 Dec 08, 2022
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022
Texture mapping with variational auto-encoders

vae-textures This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using J

Alex Nichol 41 May 24, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022