Keras implementation of "One pixel attack for fooling deep neural networks" using differential evolution on Cifar10 and ImageNet

Overview

One Pixel Attack

Open In Colab Contributions welcome MIT License

Who would win?

How simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pixel and only see the prediction probability? Turns out it is very simple. In many cases, an attacker can even cause the network to return any answer they want.

The following project is a Keras reimplementation and tutorial of "One pixel attack for fooling deep neural networks". The official code for the paper can be found here.

How It Works

For this attack, we will use the Cifar10 dataset. The task of the dataset is to correctly classify a 32x32 pixel image in 1 of 10 categories (e.g., bird, deer, truck). The black-box attack requires only the probability labels (the probability value for each category) that get outputted by the neural network. We generate adversarial images by selecting a pixel and modifying it to a certain color.

By using an Evolutionary Algorithm called Differential Evolution (DE), we can iteratively generate adversarial images to try to minimize the confidence (probability) of the neural network's classification.

Ackley GIF

Credit: Pablo R. Mier's Blog

First, generate several adversarial samples that modify a random pixel and run the images through the neural network. Next, combine the previous pixels' positions and colors together, generate several more adversarial samples from them, and run the new images through the neural network. If there were pixels that lowered the confidence of the network from the last step, replace them as the current best known solutions. Repeat these steps for a few iterations; then on the last step return the adversarial image that reduced the network's confidence the most. If successful, the confidence would be reduced so much that a new (incorrect) category now has the highest classification confidence.

See below for some examples of successful attacks:

Examples

Getting Started

Need a GPU or just want to read? View the first tutorial notebook with Google Colab.

To run the code in the tutorial locally, a dedicated GPU suitable for running with Keras (tensorflow-gpu) is recommended. Python 3.5+ required.

  1. Clone the repository.
git clone https://github.com/Hyperparticle/one-pixel-attack-keras
cd ./one-pixel-attack-keras
  1. Install the python packages in requirements.txt if you don't have them already.
pip install -r ./requirements.txt
  1. Run the iPython tutorial notebook with Jupyter.
jupyter notebook ./one-pixel-attack.ipynb

Training and Testing

To train a model, run train.py. The model will be checkpointed (saved) after each epoch to the networks/models directory.

For example, to train a ResNet with 200 epochs and a batch size of 128:

python train.py --model resnet --epochs 200 --batch_size 128

To perform attack, run attack.py. By default this will run all models with default parameters. To specify the types of models to test, use --model.

python attack.py --model densenet capsnet

The available models currently are:

Results

Preliminary results after running several experiments on various models. Each experiment generates 100 adversarial images and calculates the attack success rate, i.e., the ratio of images that successfully caused the model to misclassify an image over the total number of images. For a given model, multiple experiments are run based on the number of pixels that may be modified in an image (1,3, or 5). The differential algorithm was run with a population size of 400 and a max iteration count of 75.

Attack on 1,3,5 pixel perturbations (100 samples)

model parameters test accuracy pixels attack success (untargeted) attack success (targeted)
LeNet 62K 74.9% 1 63.0% 34.4%
3 92.0% 64.4%
5 93.0% 64.4%
Pure CNN 1.4M 88.8% 1 13.0% 6.67%
3 58.0% 13.3%
5 63.0% 18.9%
Network in Network 970K 90.8% 1 34.0% 10.0%
3 73.0% 24.4%
5 73.0% 31.1%
ResNet 470K 92.3% 1 34.0% 14.4%
3 79.0% 21.1%
5 79.0% 22.2%
DenseNet 850K 94.7% 1 31.0% 4.44%
3 71.0% 23.3%
5 69.0% 28.9%
Wide ResNet 11M 95.3% 1 19.0% 1.11%
3 58.0% 18.9%
5 65.0% 22.2%
CapsNet 12M 79.8% 1 19.0% 0.00%
3 39.0% 4.44%
5 36.0% 4.44%

It appears that the capsule network CapsNet, while more resilient to the one pixel attack than all other CNNs, is still vulnerable.

Milestones

  • Cifar10 dataset
  • Tutorial notebook
  • LeNet, Network in Network, Residual Network, DenseNet models
  • CapsNet (capsule network) model
  • Configurable command-line interface
  • Efficient differential evolution implementation
  • ImageNet dataset
Owner
Dan Kondratyuk
Machine Learning, NLP, and Computer Vision. I love a fresh challenge—be it a math problem, a physics puzzle, or programming quandary.
Dan Kondratyuk
Large scale and asynchronous Hyperparameter Optimization at your fingertip.

Syne Tune This package provides state-of-the-art distributed hyperparameter optimizers (HPO) where trials can be evaluated with several backend option

Amazon Web Services - Labs 236 Jan 01, 2023
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
Exploit ILP to learn symmetry breaking constraints of ASP programs.

ILP Symmetry Breaking Overview This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs. Given a

Research Group Production Systems 1 Apr 13, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis

Introduction This is an implementation of our paper Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis.

24 Dec 06, 2022
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
Source code for Task-Aware Variational Adversarial Active Learning

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

27 Nov 23, 2022
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023
[WACV21] Code for our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors"

DRAGON: From Generalized zero-shot learning to long-tail with class descriptors Paper Project Website Video Overview DRAGON learns to correct the bias

Dvir Samuel 25 Dec 06, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
Keras like implementation of Deep Learning architectures from scratch using numpy.

Mini-Keras Keras like implementation of Deep Learning architectures from scratch using numpy. How to contribute? The project contains implementations

MANU S PILLAI 5 Oct 10, 2021
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 03, 2023
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 04, 2023
code for "Self-supervised edge features for improved Graph Neural Network training",

Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.

Neal Ravindra 23 Dec 02, 2022
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)

Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC

Beatrice Bevilacqua 59 Dec 13, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
Codebase for "Revisiting spatio-temporal layouts for compositional action recognition" (Oral at BMVC 2021).

Revisiting spatio-temporal layouts for compositional action recognition Codebase for "Revisiting spatio-temporal layouts for compositional action reco

Gorjan 20 Dec 15, 2022
Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021