Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Overview

Punctuation Restoration using Transformer Models

This repository contins official implementation of the paper Punctuation Restoration using Transformer Models for High-and Low-Resource Languages accepted at the EMNLP workshop W-NUT 2020.

Data

English

English datasets are provided in data/en directory. These are collected from here.

Bangla

Bangla datasets are provided in data/bn directory.

Model Architecture

We fine-tune a Transformer architecture based language model (e.g., BERT) for the punctuation restoration task. Transformer encoder is followed by a bidirectional LSTM and linear layer that predicts target punctuation token at each sequence position.

Dependencies

Install PyTorch following instructions from PyTorch website. Remaining dependencies can be installed with the following command

pip install -r requirements.txt

Training

To train punctuation restoration model with optimal parameter settings for English run the following command

python src/train.py --cuda=True --pretrained-model=roberta-large --freeze-bert=False --lstm-dim=-1 
--language=english --seed=1 --lr=5e-6 --epoch=10 --use-crf=False --augment-type=all  --augment-rate=0.15 
--alpha-sub=0.4 --alpha-del=0.4 --data-path=data --save-path=out

To train for Bangla the corresponding command is

python src/train.py --cuda=True --pretrained-model=xlm-roberta-large --freeze-bert=False --lstm-dim=-1 
--language=bangla --seed=1 --lr=5e-6 --epoch=10 --use-crf=False --augment-type=all  --augment-rate=0.15 
--alpha-sub=0.4 --alpha-del=0.4 --data-path=data --save-path=out

Supported models for English

bert-base-uncased
bert-large-uncased
bert-base-multilingual-cased
bert-base-multilingual-uncased
xlm-mlm-en-2048
xlm-mlm-100-1280
roberta-base
roberta-large
distilbert-base-uncased
distilbert-base-multilingual-cased
xlm-roberta-base
xlm-roberta-large
albert-base-v1
albert-base-v2
albert-large-v2

Supported models for Bangla

bert-base-multilingual-cased
bert-base-multilingual-uncased
xlm-mlm-100-1280
distilbert-base-multilingual-cased
xlm-roberta-base
xlm-roberta-large

Pretrained Models

You can find pretrained mdoels for RoBERTa-large model with augmentation for English here
XLM-RoBERTa-large model with augmentation for Bangla can be found here

Inference

You can run inference on unprocessed text file to produce punctuated text using inference module. Note that if the text already contains punctuation they are removed before inference.

Example script for English:

python inference.py --pretrained-model=roberta-large --weight-path=roberta-large-en.pt --language=en 
--in-file=data/test_en.txt --out-file=data/test_en_out.txt

This should create the text file with following output:

Tolkien drew on a wide array of influences including language, Christianity, mythology, including the Norse Völsunga saga, archaeology, especially at the Temple of Nodens, ancient and modern literature and personal experience. He was inspired primarily by his profession, philology. his work centred on the study of Old English literature, especially Beowulf, and he acknowledged its importance to his writings. 

Similarly, For Bangla

python inference.py --pretrained-model=xlm-roberta-large --weight-path=xlm-roberta-large-bn.pt --language=bn  
--in-file=data/test_bn.txt --out-file=data/test_bn_out.txt

The expected output is

বিংশ শতাব্দীর বাংলা মননে কাজী নজরুল ইসলামের মর্যাদা ও গুরুত্ব অপরিসীম। একাধারে কবি, সাহিত্যিক, সংগীতজ্ঞ, সাংবাদিক, সম্পাদক, রাজনীতিবিদ এবং সৈনিক হিসেবে অন্যায় ও অবিচারের বিরুদ্ধে নজরুল সর্বদাই ছিলেন সোচ্চার। তার কবিতা ও গানে এই মনোভাবই প্রতিফলিত হয়েছে। অগ্নিবীণা হাতে তার প্রবেশ, ধূমকেতুর মতো তার প্রকাশ। যেমন লেখাতে বিদ্রোহী, তেমনই জীবনে কাজেই "বিদ্রোহী কবি"। তার জন্ম ও মৃত্যুবার্ষিকী বিশেষ মর্যাদার সঙ্গে উভয় বাংলাতে প্রতি বৎসর উদযাপিত হয়ে থাকে। 

Please note that Comma includes commas, colons and dashes, Period includes full stops, exclamation marks and semicolons and Question is just question marks.

Test

Trained models can be tested on processed data using test module to prepare result.

For example, to test the best preforming English model run following command

python src/test.py --pretrained-model=roberta-large --lstm-dim=-1 --use-crf=False --data-path=data/test
--weight-path=weights/roberta-large-en.pt --sequence-length=256 --save-path=out

Please provide corresponding arguments for pretrained-model, lstm-dim, use-crf that were used during training the model. This will run test for all data available in data-path directory.

Cite this work

@inproceedings{alam-etal-2020-punctuation,
    title = "Punctuation Restoration using Transformer Models for High-and Low-Resource Languages",
    author = "Alam, Tanvirul  and
      Khan, Akib  and
      Alam, Firoj",
    booktitle = "Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.wnut-1.18",
    pages = "132--142",
}
Owner
Tanvirul Alam
Deep Learning, Physics, Cosmology, Mythology, RPG.
Tanvirul Alam
Justmagic - Use a function as a method with this mystic script, like in Nim

justmagic Use a function as a method with this mystic script, like in Nim. Just

witer33 8 Oct 08, 2022
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation

Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation Introduction WAKD is a PyTorch implementation for our ICPR-2022 pap

2 Oct 20, 2022
Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023
Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System This repository contains code for the paper Schultheis,

2 Oct 28, 2022
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023
Determined: Deep Learning Training Platform

Determined: Deep Learning Training Platform Determined is an open-source deep learning training platform that makes building models fast and easy. Det

Determined AI 2k Dec 31, 2022
This is the official pytorch implementation of Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation(TESKD)

Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation (TESKD) By Zheng Li[1,4], Xiang Li[2], Lingfeng Yang[2,4], Jian Yang[2], Zh

Zheng Li 9 Sep 26, 2022
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022
SMCA replication There are no extra compiled components in SMCA DETR and package dependencies are minimal

Usage There are no extra compiled components in SMCA DETR and package dependencies are minimal, so the code is very simple to use. We provide instruct

22 May 06, 2022
Security evaluation module with onnx, pytorch, and SecML.

🚀 🐼 🔥 PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you

Maura Pintor 11 Apr 12, 2022
8-week curriculum for AI Builders

curriculum 8-week curriculum for AI Builders สารบัญ บทที่ 1 - Machine Learning คืออะไร บทที่ 2 - ชุดข้อมูลมหัศจรรย์และถิ่นที่อยู่ บทที่ 3 - Stochastic

AI Builders 134 Jan 03, 2023
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
PyTorch implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 13.4k Jan 08, 2023
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023