[IJCAI'21] Deep Automatic Natural Image Matting

Overview

Deep Automatic Natural Image Matting [IJCAI-21]

This is the official repository of the paper Deep Automatic Natural Image Matting.

Introduction | Network | AIM-500 | Results | Statement


📆 News

The training code, inference code and the pretrained models will be released soon.

[2021-07-16]: Publish the validation dataset AIM-500. Please follow the readme.txt for details.

Introduction

Different from previous methods only focusing on images with salient opaque foregrounds such as humans and animals, in this paper, we investigate the difficulties when extending the automatic matting methods to natural images with salient transparent/meticulous foregrounds or non-salient foregrounds.

To address the problem, we propose a novel end-to-end matting network, which can predict a generalized trimap for any image of the above types as a unified semantic representation. Simultaneously, the learned semantic features guide the matting network to focus on the transition areas via an attention mechanism.

We also construct a test set AIM-500 that contains 500 diverse natural images covering all types along with manually labeled alpha mattes, making it feasible to benchmark the generalization ability of AIM models. Results of the experiments demonstrate that our network trained on available composite matting datasets outperforms existing methods both objectively and subjectively.

Network

We propose the methods consist of:

  • Improved Backbone for Matting: an advanced max-pooling version of ResNet-34, serves as the backbone for the matting network, pretrained on ImageNet;

  • Unified Semantic Representation: a type-wise semantic representation to replace the traditional trimaps;

  • Guided Matting Process: an attention based mechanism to guide the matting process by leveraging the learned semantic features from the semantic decoder to focus on extracting details only within transition area.

The backbone pretrained on ImageNet and the model pretrained on synthetic matting dataset will be released soon.

Pretrained-backbone Pretrained-model
coming soon coming soon

AIM-500

We propose AIM-500 (Automatic Image Matting-500), the first natural image matting test set, which contains 500 high-resolution real-world natural images from all three types (SO, STM, NS), many categories, and the manually labeled alpha mattes. Some examples and the amount of each category are shown below. The AIM-500 dataset is published now, can be downloaded directly from this link. Please follow the readme.txt for more details.

Portrait Animal Transparent Plant Furniture Toy Fruit
100 200 34 75 45 36 10

Results

We test our network on different types of images in AIM-500 and compare with previous SOTA methods, the results are shown below.

Statement

If you are interested in our work, please consider citing the following:

@inproceedings{ijcai2021-danim,
  title     = {Deep Automatic Natural Image Matting},
  author    = {Li, Jizhizi and Zhang, Jing and Tao, Dacheng},
  publisher = {International Joint Conferences on Artificial Intelligence Organization},
  year      = {2021},
}

This project is under the MIT license. For further questions, please contact [email protected].

Relevant Projects

End-to-end Animal Image Matting
Jizhizi Li, Jing Zhang, Stephen J. Maybank, Dacheng Tao

Owner
Jizhizi_Li
Ph.D. student at the University of Sydney - Artificial Intelligence
Jizhizi_Li
Instance-based label smoothing for improving deep neural networks generalization and calibration

Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc

Mohamed Maher 1 Aug 13, 2022
Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

Deep Learning with TensorFlow 2 and Keras – Notebooks This project accompanies my Deep Learning with TensorFlow 2 and Keras trainings. It contains the

Aurélien Geron 1.9k Dec 15, 2022
DeconvNet : Learning Deconvolution Network for Semantic Segmentation

DeconvNet: Learning Deconvolution Network for Semantic Segmentation Created by Hyeonwoo Noh, Seunghoon Hong and Bohyung Han at POSTECH Acknowledgement

Hyeonwoo Noh 325 Oct 20, 2022
Rule Based Classification Project

Kural Tabanlı Sınıflandırma ile Potansiyel Müşteri Getirisi Hesaplama İş Problemi: Bir oyun şirketi müşterilerinin bazı özelliklerini kullanaraknseviy

Şafak 1 Jan 12, 2022
How Do Adam and Training Strategies Help BNNs Optimization? In ICML 2021.

AdamBNN This is the pytorch implementation of our paper "How Do Adam and Training Strategies Help BNNs Optimization?", published in ICML 2021. In this

Zechun Liu 47 Sep 20, 2022
Implementation of MA-Trace - a general-purpose multi-agent RL algorithm for cooperative environments.

Off-Policy Correction For Multi-Agent Reinforcement Learning This repository is the official implementation of Off-Policy Correction For Multi-Agent R

4 Aug 18, 2022
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely

1 Mar 28, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022
BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构

BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构。 文档地址:https://basecls.readthedocs.io 安装 安装环境 BaseCls 需要 Python = 3.6。 BaseCls 依赖 M

MEGVII Research 28 Dec 23, 2022
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
An Implementation of SiameseRPN with Feature Pyramid Networks

SiameseRPN with FPN This project is mainly based on HelloRicky123/Siamese-RPN. What I've done is just add a Feature Pyramid Network method to the orig

3 Apr 16, 2022
A unified framework to jointly model images, text, and human attention traces.

connect-caption-and-trace This repository contains the reference code for our paper Connecting What to Say With Where to Look by Modeling Human Attent

Meta Research 73 Oct 24, 2022
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023