Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Overview

Neuron Merging: Compensating for Pruned Neurons

Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference on Neural Information Processing Systems (NeurIPS 2020).

Requirements

To install requirements:

conda env create -f ./environment.yml

Python environment & main libraries:

  • python 3.8
  • pytorch 1.5.0
  • scikit-learn 0.22.1
  • torchvision 0.6.0

LeNet-300-100

To test LeNet-300-100 model on FashionMNIST, run:

bash scripts/LeNet_300_100_FashionMNIST.sh -t [model type] -c [criterion] -r [pruning ratio]

You can use three arguments for this script:

  • model type: original | prune | merge
  • pruning criterion : l1-norm | l2-norm | l2-GM
  • pruning ratio : 0.0 ~ 1.0

For example, to test the model after pruning 50% of the neurons with $l_1$-norm criterion, run:

bash scripts/LeNet_300_100_FashionMNIST.sh -t prune -c l1-norm -r 0.5

To test the model after merging , run:

bash scripts/LeNet_300_100_FashionMNIST.sh -t merge -c l1-norm -r 0.5

VGG-16

To test VGG-16 model on CIFAR-10, run:

bash scripts/VGG16_CIFAR10.sh -t [model type] -c [criterion]

You can use two arguments for this script

  • model type: original | prune | merge
  • pruning criterion: l1-norm | l2-norm | l2-GM

As a pretrained model on CIFAR-100 is not included, you must train it first. To train VGG-16 on CIFAR-100, run:

bash scripts/VGG16_CIFAR100_train.sh

All the hyperparameters are as described in the supplementary material.

After training, to test VGG-16 model on CIFAR-100, run:

bash scripts/VGG16_CIFAR100.sh -t [model type] -c [criterion]

You can use two arguments for this script

  • model type: original | prune | merge
  • pruning criterion: l1-norm | l2-norm | l2-GM

ResNet

To test ResNet-56 model on CIFAR-10, run:

bash scripts/ResNet56_CIFAR10.sh -t [model type] -c [criterion] -r [pruning ratio]

You can use three arguments for this script

  • model type: original | prune | merge
  • pruning method : l1-norm | l2-norm | l2-GM
  • pruning ratio : 0.0 ~ 1.0

To test WideResNet-40-4 model on CIFAR-10, run:

bash scripts/WideResNet_40_4_CIFAR10.sh -t [model type] -c [criterion] -r [pruning ratio]

You can use three arguments for this script

  • model type: original | prune | merge
  • pruning method : l1-norm | l2-norm | l2-GM
  • pruning ratio : 0.0 ~ 1.0

Results

Our model achieves the following performance on (without fine-tuning) :

Image classification of LeNet-300-100 on FashionMNIST

Baseline Accuracy : 89.80%

Pruning Ratio Prune ($l_1$-norm) Merge
50% 88.40% 88.69%
60% 85.17% 86.92%
70% 71.26% 82.75%
80% 66.76 80.02%

Image classification of VGG-16 on CIFAR-10

Baseline Accuracy : 93.70%

Criterion Prune Merge
$l_1$-norm 88.70% 93.16%
$l_2$-norm 89.14% 93.16%
$l_2$-GM 87.85% 93.10%

Citation

@inproceedings{kim2020merging,
  title     = {Neuron Merging: Compensating for Pruned Neurons},
  author    = {Kim, Woojeong and Kim, Suhyun and Park, Mincheol and Jeon, Geonseok},
  booktitle = {Advances in Neural Information Processing Systems 33},
  year      = {2020}
}
Owner
Woojeong Kim
Woojeong Kim
Example of semantic segmentation in Keras

keras-semantic-segmentation-example Example of semantic segmentation in Keras Single class example: Generated data: random ellipse with random color o

53 Mar 23, 2022
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
Reading list for research topics in Masked Image Modeling

awesome-MIM Reading list for research topics in Masked Image Modeling(MIM). We list the most popular methods for MIM, if I missed something, please su

ligang 231 Dec 07, 2022
Auto White-Balance Correction for Mixed-Illuminant Scenes

Auto White-Balance Correction for Mixed-Illuminant Scenes Mahmoud Afifi, Marcus A. Brubaker, and Michael S. Brown York University Video Reference code

Mahmoud Afifi 47 Nov 26, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
Detectron2 for Document Layout Analysis

Detectron2 trained on PubLayNet dataset This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Det

Himanshu 163 Nov 21, 2022
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
SANet: A Slice-Aware Network for Pulmonary Nodule Detection

SANet: A Slice-Aware Network for Pulmonary Nodule Detection This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021. This code and

Jie Mei 39 Dec 17, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
KE-Dialogue: Injecting knowledge graph into a fully end-to-end dialogue system.

Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems This is the implementation of the paper: Learning Knowledge Bases with Par

CAiRE 42 Nov 10, 2022
Proto-RL: Reinforcement Learning with Prototypical Representations

Proto-RL: Reinforcement Learning with Prototypical Representations This is a PyTorch implementation of Proto-RL from Reinforcement Learning with Proto

Denis Yarats 74 Dec 06, 2022
[ICCV 2021] Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation

ADDS-DepthNet This is the official implementation of the paper Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation I

LIU_LINA 52 Nov 24, 2022
Utilities to bridge Canvas-generated course rosters with GitLab's API.

gitlab-canvas-utils A collection of scripts originally written for CSE 13S. Oversees everything from GitLab course group creation, student repository

Eugene Chou 5 Jun 08, 2022
Analyzes your GitHub Profile and presents you with a report on how likely you are to become the next MLH Fellow!

Fellowship Prediction GitHub Profile Comparative Analysis Tool Built with BentoML Table of Contents: Features Disclaimer Technologies Used Contributin

Damir Temir 51 Dec 29, 2022
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023