This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

Overview

DBSegment

This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1 min for one case.

The tool is available as a pip package. To run the package a GPU is required.

We highly recommend installing the package inside a virtual environment. For some instruction on virtual envrionment and pip package installation, please refer to: https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/

Installation

pip install DBSegment

Once the package is installed, you can get the segmention by running the following command:

Example

DBSegment -i input_folder -o output_folder -mp path_to_model

The input folder should contain you input image, e.g. filename.nii.gz. Once it is done, two folders will be created, a preprocessed and an output folder. The output folder contains the segmentations of the the 30 brain structures and one label for the rest of the brain, filename.nii.gz, a file containing 30 brian structures segmenation, filename_seg.nii.gz, and a brain mask, filename_brainmask.nii.gz. The ouput files should be applied on the preprocessed image in the preprocessed folder, filename_0000.nii.gz.

Flags

-i is the input folder where your MR images are located. The input folder should contain nifti format T1 weighted MRI in ".nii.gz"* or ".nii"* format.

-i /Users/mehri.baniasadi/Documents/mr_data

-o is the output folder where the model outputs the segmentations.

-o /Users/mehri.baniasadi/Documents/mr_seg

-mp is the path to save the model. The default is /usr/local/share

-mp /Users/mehri.baniasadi/Documents/models

-f are the folds (networks) used for segmentation. The available folds are 0, 1, 2, 3, 4, 5, 6. The default folds are 4 and 6. We recommend to keep the default settings, and do not define this parameter.

-f 4 6

-v is the the version of the preprocessing you would like to aply before segmenation. The default is v3 (LPI oritnation, 1mm voxel spacing, 256 Dimension). The alternative option is v1 (LPI orientaiton). Please note that by chaning the version to v1 the segmenation quality will reduce by 1-2%.

-v v1

--disable_tta This Flag is for the test time augmentation. The default is True and tta is disabled, to enable the tta, set this flag to True. By setting the flag to True, the segmenation quality will improve by ~0.2%, and the inference time will increase by 10-20 seconds.

--disable_tta True

Owner
Luxembourg Neuroimaging (Platform OpNeuroImg)
Collaboration between Interventional Neuroscience Group @uni.lu and National Dept. of Neurosurgery @centre hospitalier de Luxembourg
Luxembourg Neuroimaging (Platform OpNeuroImg)
PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer.

Unsupervised_IEPGAN This is the PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer. Ha

25 Oct 26, 2022
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

Yutong Zhang 1 Mar 01, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
PyTorch Personal Trainer: My framework for deep learning experiments

Alex's PyTorch Personal Trainer (ptpt) (name subject to change) This repository contains my personal lightweight framework for deep learning projects

Alex McKinney 8 Jul 14, 2022
A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

AnimeGAN A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. Randomly Generated Images The images are

Jie Lei 雷杰 1.2k Jan 03, 2023
Pytorch implementation of ProjectedGAN

ProjectedGAN-pytorch Pytorch implementation of ProjectedGAN (https://arxiv.org/abs/2111.01007) Note: this repository is still under developement. @InP

Dominic Rampas 17 Dec 14, 2022
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Thank you for you

Weirui Ye 671 Jan 03, 2023
Recommendation algorithms for large graphs

Fast recommendation algorithms for large graphs based on link analysis. License: Apache Software License Author: Emmanouil (Manios) Krasanakis Depende

Multimedia Knowledge and Social Analytics Lab 27 Jan 07, 2023