This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

Overview

DBSegment

This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1 min for one case.

The tool is available as a pip package. To run the package a GPU is required.

We highly recommend installing the package inside a virtual environment. For some instruction on virtual envrionment and pip package installation, please refer to: https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/

Installation

pip install DBSegment

Once the package is installed, you can get the segmention by running the following command:

Example

DBSegment -i input_folder -o output_folder -mp path_to_model

The input folder should contain you input image, e.g. filename.nii.gz. Once it is done, two folders will be created, a preprocessed and an output folder. The output folder contains the segmentations of the the 30 brain structures and one label for the rest of the brain, filename.nii.gz, a file containing 30 brian structures segmenation, filename_seg.nii.gz, and a brain mask, filename_brainmask.nii.gz. The ouput files should be applied on the preprocessed image in the preprocessed folder, filename_0000.nii.gz.

Flags

-i is the input folder where your MR images are located. The input folder should contain nifti format T1 weighted MRI in ".nii.gz"* or ".nii"* format.

-i /Users/mehri.baniasadi/Documents/mr_data

-o is the output folder where the model outputs the segmentations.

-o /Users/mehri.baniasadi/Documents/mr_seg

-mp is the path to save the model. The default is /usr/local/share

-mp /Users/mehri.baniasadi/Documents/models

-f are the folds (networks) used for segmentation. The available folds are 0, 1, 2, 3, 4, 5, 6. The default folds are 4 and 6. We recommend to keep the default settings, and do not define this parameter.

-f 4 6

-v is the the version of the preprocessing you would like to aply before segmenation. The default is v3 (LPI oritnation, 1mm voxel spacing, 256 Dimension). The alternative option is v1 (LPI orientaiton). Please note that by chaning the version to v1 the segmenation quality will reduce by 1-2%.

-v v1

--disable_tta This Flag is for the test time augmentation. The default is True and tta is disabled, to enable the tta, set this flag to True. By setting the flag to True, the segmenation quality will improve by ~0.2%, and the inference time will increase by 10-20 seconds.

--disable_tta True

Owner
Luxembourg Neuroimaging (Platform OpNeuroImg)
Collaboration between Interventional Neuroscience Group @uni.lu and National Dept. of Neurosurgery @centre hospitalier de Luxembourg
Luxembourg Neuroimaging (Platform OpNeuroImg)
PaddleBoBo是基于PaddlePaddle和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目

PaddleBoBo - 元宇宙时代,你也可以动手做一个虚拟主播。 PaddleBoBo是基于飞桨PaddlePaddle深度学习框架和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目。PaddleBoBo致力于简单高效、可复用性强,只需要一张带人像的图片和一段文字,就能

502 Jan 08, 2023
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

6 Dec 19, 2022
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Hamed Bonab 16 Sep 12, 2022
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
MQBench: Towards Reproducible and Deployable Model Quantization Benchmark

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark We propose a benchmark to evaluate different quantization algorithms on vari

494 Dec 29, 2022
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based

Facebook Research 255 Dec 27, 2022
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius Rückert 1.9k Jan 06, 2023
ConvMixer unofficial implementation

ConvMixer ConvMixer 非官方实现 pytorch 版本已经实现。 nets 是重构版本 ,test 是官方代码 感兴趣小伙伴可以对照看一下。 keras 已经实现 tf2.x 中 是tensorflow 2 版本 gelu 激活函数要求 tf=2.4 否则使用入下代码代替gelu

Jian Tengfei 8 Jul 11, 2022
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
Implementation for the "Surface Reconstruction from 3D Line Segments" paper.

Surface Reconstruction from 3D Line Segments Surface reconstruction from 3d line segments. Langlois, P. A., Boulch, A., & Marlet, R. In 2019 Internati

85 Jan 04, 2023
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022
A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).

APPNP ⠀ A PyTorch implementation of Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019). Abstract Neural message pass

Benedek Rozemberczki 329 Dec 30, 2022