PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Overview

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

This repository contains the PyTorch implementation of the PanopticBEV model proposed in our RA-L 2021 paper Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images.

Our approach, PanopticBEV, is the state-of-the-art approach for generating panoptic segmentation maps in the bird's eye view using only monocular frontal view images.

PanopticBEV Teaser

If you find this code useful for your research, please consider citing our paper:

@article{gosala2021bev,
  title={Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images},
  author={Gosala, Nikhil and Valada, Abhinav},
  journal={arXiv preprint arXiv:2108.03227},
  year={2021}
}

Relevant links

System requirements

  • Linux (Tested on Ubuntu 18.04)
  • Python3 (Tested using Python 3.6.9)
  • PyTorch (Tested using PyTorch 1.8.1)
  • CUDA (Tested using CUDA 11.1)

Installation

a. Create a python virtual environment and activate it.

python3 -m venv panoptic_bev
source panoptic_bev/bin/activate

b. Update pip to the latest version.

python3 -m pip install --upgrade pip

c. Install the required python dependencies using the provided requirements.txt file.

pip3 install -r requirements.txt

d. Install the PanopticBEV code.

python3 setup.py develop

Obtaining the datasets

Please download the datasets from here and follow the instructions provided in the encapsulated readme file.

Code Execution

Configuration parameters

The configuration parameters of the model such as the learning rate, batch size, and dataloader options are stored in the experiments/config folder. If you intend to modify the model parameters, please do so here.

Training and Evaluation

The training and evaluation python codes along with the shell scripts to execute them are provided in the scripts folder. Before running the shell scripts, please fill in the missing parameters with your computer-specific data paths and parameters.

To train the model, execute the following command after replacing * with either kitti or nuscenes.

bash train_panoptic_bev_*.sh

To evaluate the model, execute the following command after replacing * with either kitti or nuscenes.

bash eval_panoptic_bev_*.sh 

Acknowledgements

This work was supported by the Federal Ministry of Education and Research (BMBF) of Germany under ISA 4.0 and by the Eva Mayr-Stihl Stiftung.

This project contains code adapted from other open-source projects. We especially thank the authors of:

License

This code is released under the GPLv3 for academic usage. For commercial usage, please contact Nikhil Gosala.

Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
Diagnostic tests for linguistic capacities in language models

LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist

61 Jan 02, 2023
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
ivadomed is an integrated framework for medical image analysis with deep learning.

Repository on the collaborative IVADO medical imaging project between the Mila and NeuroPoly labs.

144 Dec 19, 2022
This is the code for "HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields".

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields This is the code for "HyperNeRF: A Higher-Dimensional

Google 702 Jan 02, 2023
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon

Kingdrone 43 Jan 05, 2023
A study project using the AA-RMVSNet to reconstruct buildings from multiple images

3d-building-reconstruction This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images. Introduction It is exci

17 Oct 17, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
This Deep Learning Model Predicts that from which disease you are suffering.

Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int

Jai Viral Doshi 0 Jan 20, 2022
Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

Lam chi 17 Nov 22, 2022
Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Scribble-Supervised LiDAR Semantic Segmentation Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORA

102 Dec 25, 2022
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022
Fully Convolutional DenseNets for semantic segmentation.

Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense

485 Nov 26, 2022
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs

DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs Abstract: Image-to-image translation has recently achieved re

yaxingwang 23 Apr 14, 2022
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Jaehyeon Kim 1.7k Jan 08, 2023
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
Use evolutionary algorithms instead of gridsearch in scikit-learn

sklearn-deap Use evolutionary algorithms instead of gridsearch in scikit-learn. This allows you to reduce the time required to find the best parameter

rsteca 709 Jan 03, 2023
DiffStride: Learning strides in convolutional neural networks

DiffStride is a pooling layer with learnable strides. Unlike strided convolutions, average pooling or max-pooling that require cross-validating stride values at each layer, DiffStride can be initiali

Google Research 113 Dec 13, 2022