Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Overview

Maximum Likelihood Training of Score-Based Diffusion Models

This repo contains the official implementation for the paper Maximum Likelihood Training of Score-Based Diffusion Models

by Yang Song*, Conor Durkan*, Iain Murray, and Stefano Ermon. Published in NeurIPS 2021 (spotlight).


We prove the connection between the Kullback–Leibler divergence and the weighted combination of score matching losses used for training score-based generative models. Our results can be viewed as a generalization of both the de Bruijn identity in information theory and the evidence lower bound in variational inference.

Our theoretical results enable ScoreFlow, a continuous normalizing flow model trained with a variational objective, which is much more efficient than neural ODEs. We report the state-of-the-art likelihood on CIFAR-10 and ImageNet 32x32 among all flow models, achieving comparable performance to cutting-edge autoregressive models.

How to run the code

Dependencies

Run the following to install a subset of necessary python packages for our code

pip install -r requirements.txt

Stats files for quantitative evaluation

We provide stats files for computing FID and Inception scores for CIFAR-10 and ImageNet 32x32. You can find cifar10_stats.npz and imagenet32_stats.npz under the directory assets/stats in our Google drive. Download them and save to assets/stats/ in the code repo.

Usage

Train and evaluate our models through main.py. Here are some common options:

main.py:
  --config: Training configuration.
    (default: 'None')
  --eval_folder: The folder name for storing evaluation results
    (default: 'eval')
  --mode: <train|eval|train_deq>: Running mode: train or eval or training the Flow++ variational dequantization model
  --workdir: Working directory
  • config is the path to the config file. Our config files are provided in configs/. They are formatted according to ml_collections and should be quite self-explanatory.

    Naming conventions of config files: the name of a config file contains the following attributes:

    • dataset: Either cifar10 or imagenet32
    • model: Either ddpmpp_continuous or ddpmpp_deep_continuous
  • workdir is the path that stores all artifacts of one experiment, like checkpoints, samples, and evaluation results.

  • eval_folder is the name of a subfolder in workdir that stores all artifacts of the evaluation process, like meta checkpoints for supporting pre-emption recovery, image samples, and numpy dumps of quantitative results.

  • mode is either "train" or "eval" or "train_deq". When set to "train", it starts the training of a new model, or resumes the training of an old model if its meta-checkpoints (for resuming running after pre-emption in a cloud environment) exist in workdir/checkpoints-meta . When set to "eval", it can do the following:

    • Compute the log-likelihood on the training or test dataset.

    • Compute the lower bound of the log-likelihood on the training or test dataset.

    • Evaluate the loss function on the test / validation dataset.

    • Generate a fixed number of samples and compute its Inception score, FID, or KID. Prior to evaluation, stats files must have already been downloaded/computed and stored in assets/stats.

      When set to "train_deq", it trains a Flow++ variational dequantization model to bridge the gap of likelihoods on continuous and discrete images. Recommended if you want to compete with generative models trained on discrete images, such as VAEs and autoregressive models. train_deq mode also supports pre-emption recovery.

These functionalities can be configured through config files, or more conveniently, through the command-line support of the ml_collections package.

Configurations for training

To turn on likelihood weighting, set --config.training.likelihood_weighting. To additionally turn on importance sampling for variance reduction, use --config.training.likelihood_weighting. To train a separate Flow++ variational dequantizer, you need to first finish training a score-based model, then use --mode=train_deq.

Configurations for evaluation

To generate samples and evaluate sample quality, use the --config.eval.enable_sampling flag; to compute log-likelihoods, use the --config.eval.enable_bpd flag, and specify --config.eval.dataset=train/test to indicate whether to compute the likelihoods on the training or test dataset. Turn on --config.eval.bound to evaluate the variational bound for the log-likelihood. Enable --config.eval.dequantizer to use variational dequantization for likelihood computation. --config.eval.num_repeats configures the number of repetitions across the dataset (more can reduce the variance of the likelihoods; default to 5).

Pretrained checkpoints

All checkpoints are provided in this Google drive.

Folder structure:

  • assets: contains cifar10_stats.npz and imagenet32_stats.npz. Necessary for computing FID and Inception scores.
  • <cifar10|imagenet32>_(deep)_<vp|subvp>_(likelihood)_(iw)_(flip). Here the part enclosed in () is optional. deep in the name specifies whether the score model is a deeper architecture (ddpmpp_deep_continuous). likelihood specifies whether the model was trained with likelihood weighting. iw specifies whether the model was trained with importance sampling for variance reduction. flip shows whether the model was trained with horizontal flip for data augmentation. Each folder has the following two subfolders:
    • checkpoints: contains the last checkpoint for the score-based model.
    • flowpp_dequantizer/checkpoints: contains the last checkpoint for the Flow++ variational dequantization model.

References

If you find the code useful for your research, please consider citing

@inproceedings{song2021maximum,
  title={Maximum Likelihood Training of Score-Based Diffusion Models},
  author={Song, Yang and Durkan, Conor and Murray, Iain and Ermon, Stefano},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}

This work is built upon some previous papers which might also interest you:

  • Yang Song and Stefano Ermon. "Generative Modeling by Estimating Gradients of the Data Distribution." Proceedings of the 33rd Annual Conference on Neural Information Processing Systems, 2019.
  • Yang Song and Stefano Ermon. "Improved techniques for training score-based generative models." Proceedings of the 34th Annual Conference on Neural Information Processing Systems, 2020.
  • Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. "Score-Based Generative Modeling through Stochastic Differential Equations". Proceedings of the 9th International Conference on Learning Representations, 2021.
Owner
Yang Song
PhD Candidate in Stanford AI Lab
Yang Song
D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim

16 Dec 25, 2022
The King is Naked: on the Notion of Robustness for Natural Language Processing

the-king-is-naked: on the notion of robustness for natural language processing AAAI2022 DISCLAIMER:This repo will be updated soon with instructions on

Iperboreo_ 1 Nov 24, 2022
an implementation of softmax splatting for differentiable forward warping using PyTorch

softmax-splatting This is a reference implementation of the softmax splatting operator, which has been proposed in Softmax Splatting for Video Frame I

Simon Niklaus 338 Dec 28, 2022
Proof-Of-Concept Piano-Drums Music AI Model/Implementation

Rock Piano "When all is one and one is all, that's what it is to be a rock and not to roll." ---Led Zeppelin, "Stairway To Heaven" Proof-Of-Concept Pi

Alex 4 Nov 28, 2021
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
FLVIS: Feedback Loop Based Visual Initial SLAM

FLVIS Feedback Loop Based Visual Inertial SLAM 1-Video EuRoC DataSet MH_05 Handheld Test in Lab FlVIS on UAV Platform 2-Relevent Publication: Under Re

UAV Lab - HKPolyU 182 Dec 04, 2022
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196

img_sussifier A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196 Examples How to use install python pip i

41 Sep 30, 2022
🧮 Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model A

Florian Wilhelm 39 Dec 03, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
Fast and accurate optimisation for registration with little learningconvexadam

convexAdam Learn2Reg 2021 Submission Fast and accurate optimisation for registration with little learning Excellent results on Learn2Reg 2021 challeng

17 Dec 06, 2022
True Few-Shot Learning with Language Models

This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.

Ethan Perez 124 Jan 04, 2023
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ

Lau 100 Dec 25, 2022
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022