Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Overview

Monk - A computer vision toolkit for everyone Tweet

Version Build_Status


Why use Monk

  • Issue: Want to begin learning computer vision

    • Solution: Start with Monk's hands-on study roadmap tutorials
  • Issue: Multiple libraries hence multiple syntaxes to learn

    • Solution: Monk's one syntax to rule them all - pytorch, keras, mxnet, etc
  • Issue: Tough to keep track of all the trial projects while participating in a deep learning competition

    • Solution: Use monk's project management and work on multiple prototyping experiments
  • Issue: Tough to set hyper-parameters while training a classifier

    • Solution: Try out hyper-parameter analyser to find the right fit
  • Issue: Looking for a library to build quick solutions for your customer

    • Solution: Train, Infer and deploy with monk's low-code syntax


Create real-world Image Classification applications

Medical Domain Fashion Domain Autonomous Vehicles Domain
Agriculture Domain Wildlife Domain Retail Domain
Satellite Domain Healthcare Domain Activity Analysis Domain

...... For more check out the Application Model Zoo!!!!



How does Monk make image classification easy

  • Write less code and create end to end applications.
  • Learn only one syntax and create applications using any deep learning library - pytorch, mxnet, keras, tensorflow, etc
  • Manage your entire project easily with multiple experiments


For whom this library is built

  • Students
    • Seamlessly learn computer vision using our comprehensive study roadmaps
  • Researchers and Developers
    • Create and Manage multiple deep learning projects
  • Competiton participants (Kaggle, Codalab, Hackerearth, AiCrowd, etc)
    • Expedite the prototyping process and jumpstart with a higher rank


Table of Contents




Sample Showcase - Quick Mode

Create an image classifier.

#Create an experiment
ptf.Prototype("sample-project-1", "sample-experiment-1")

#Load Data
ptf.Default(dataset_path="sample_dataset/", 
             model_name="resnet18", 
             num_epochs=2)
# Train
ptf.Train()

Inference

predictions = ptf.Infer(img_name="sample.png", return_raw=True);

Compare Experiments

#Create comparison project
ctf.Comparison("Sample-Comparison-1");

#Add all your experiments
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
   
# Generate statistics
ctf.Generate_Statistics();



Installation

  • CUDA 9.0          : pip install -U monk-cuda90
  • CUDA 9.0          : pip install -U monk-cuda92
  • CUDA 10.0        : pip install -U monk-cuda100
  • CUDA 10.1        : pip install -U monk-cuda101
  • CUDA 10.2        : pip install -U monk-cuda102
  • CPU (+Mac-OS) : pip install -U monk-cpu
  • Google Colab   : pip install -U monk-colab
  • Kaggle              : pip install -U monk-kaggle

For More Installation instructions visit: Link




Study Roadmaps




Documentation




TODO-2020

Features

  • Model Visualization
  • Pre-processed data visualization
  • Learned feature visualization
  • NDimensional data input - npy - hdf5 - dicom - tiff
  • Multi-label Image Classification
  • Custom model development

General

  • Functional Documentation
  • Tackle Multiple versions of libraries
  • Add unit-testing
  • Contribution guidelines
  • Python pip packaging support

Backend Support

  • Tensorflow 2.0 provision support with v1
  • Tensorflow 2.0 complete
  • Chainer

External Libraries

  • TensorRT Acceleration
  • Intel Acceleration
  • Echo AI - for Activation functions


Connect with the project contributors



Copyright

Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Owner
Tessellate Imaging
Computer Vision and Deep Learning Consultance and Development
Tessellate Imaging
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training.

Updates (2020/06/21) Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training. Pyr

1.3k Jan 04, 2023
A collection of awesome resources image-to-image translation.

awesome image-to-image translation A collection of resources on image-to-image translation. Contributing If you think I have missed out on something (

876 Dec 28, 2022
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
Code for GNMR in ICDE 2021

GNMR Code for GNMR in ICDE 2021 Please unzip data files in Datasets/MultiInt-ML10M first. Run labcode_preSamp.py (with graph sampling) for ECommerce-c

7 Oct 27, 2022
Official code for: A Probabilistic Hard Attention Model For Sequentially Observed Scenes

"A Probabilistic Hard Attention Model For Sequentially Observed Scenes" Authors: Samrudhdhi Rangrej, James Clark Accepted to: BMVC'21 A recurrent atte

5 Nov 19, 2022
πŸ₯‡ LG-AI-Challenge 2022 1μœ„ μ†”λ£¨μ…˜ μž…λ‹ˆλ‹€.

LG-AI-Challenge-for-Plant-Classification Daconμ—μ„œ μ§„ν–‰λœ 농업 ν™˜κ²½ 변화에 λ”°λ₯Έ μž‘λ¬Ό 병해 진단 AI κ²½μ§„λŒ€νšŒ 에 λŒ€ν•œ μ½”λ“œμž…λ‹ˆλ‹€. (colab directory에 μ½”λ“œκ°€ 잘 정리 λ˜μ–΄μžˆμŠ΅λ‹ˆλ‹€.) Requirements python

siwooyong 10 Jun 30, 2022
Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Spchcat Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi. Description spchcat is a command-line tool that read

Pete Warden 279 Jan 03, 2023
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering PC-SOS-SDP is an exact algorithm based on the branch-and-bound techn

Antonio M. Sudoso 1 Nov 13, 2022
You Only Look Once for Panopitic Driving Perception

You Only πŸ‘€ Once for Panoptic πŸš— Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022
Simple Python project using Opencv and datetime package to recognise faces and log attendance data in a csv file.

Attendance-System-based-on-Facial-recognition-Attendance-data-stored-in-csv-file- Simple Python project using Opencv and datetime package to recognise

3 Aug 09, 2022
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
AnimationKit: AI Upscaling & Interpolation using Real-ESRGAN+RIFE

ALPHA 2.5: Frostbite Revival (Released 12/23/21) Changelog: [ UI ] Chained design. All steps link to one another! Use the master override toggles to s

87 Nov 16, 2022
ReAct: Out-of-distribution Detection With Rectified Activations

ReAct: Out-of-distribution Detection With Rectified Activations This is the source code for paper ReAct: Out-of-distribution Detection With Rectified

38 Dec 05, 2022
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022