Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Overview

Monk - A computer vision toolkit for everyone Tweet

Version Build_Status


Why use Monk

  • Issue: Want to begin learning computer vision

    • Solution: Start with Monk's hands-on study roadmap tutorials
  • Issue: Multiple libraries hence multiple syntaxes to learn

    • Solution: Monk's one syntax to rule them all - pytorch, keras, mxnet, etc
  • Issue: Tough to keep track of all the trial projects while participating in a deep learning competition

    • Solution: Use monk's project management and work on multiple prototyping experiments
  • Issue: Tough to set hyper-parameters while training a classifier

    • Solution: Try out hyper-parameter analyser to find the right fit
  • Issue: Looking for a library to build quick solutions for your customer

    • Solution: Train, Infer and deploy with monk's low-code syntax


Create real-world Image Classification applications

Medical Domain Fashion Domain Autonomous Vehicles Domain
Agriculture Domain Wildlife Domain Retail Domain
Satellite Domain Healthcare Domain Activity Analysis Domain

...... For more check out the Application Model Zoo!!!!



How does Monk make image classification easy

  • Write less code and create end to end applications.
  • Learn only one syntax and create applications using any deep learning library - pytorch, mxnet, keras, tensorflow, etc
  • Manage your entire project easily with multiple experiments


For whom this library is built

  • Students
    • Seamlessly learn computer vision using our comprehensive study roadmaps
  • Researchers and Developers
    • Create and Manage multiple deep learning projects
  • Competiton participants (Kaggle, Codalab, Hackerearth, AiCrowd, etc)
    • Expedite the prototyping process and jumpstart with a higher rank


Table of Contents




Sample Showcase - Quick Mode

Create an image classifier.

#Create an experiment
ptf.Prototype("sample-project-1", "sample-experiment-1")

#Load Data
ptf.Default(dataset_path="sample_dataset/", 
             model_name="resnet18", 
             num_epochs=2)
# Train
ptf.Train()

Inference

predictions = ptf.Infer(img_name="sample.png", return_raw=True);

Compare Experiments

#Create comparison project
ctf.Comparison("Sample-Comparison-1");

#Add all your experiments
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
   
# Generate statistics
ctf.Generate_Statistics();



Installation

  • CUDA 9.0          : pip install -U monk-cuda90
  • CUDA 9.0          : pip install -U monk-cuda92
  • CUDA 10.0        : pip install -U monk-cuda100
  • CUDA 10.1        : pip install -U monk-cuda101
  • CUDA 10.2        : pip install -U monk-cuda102
  • CPU (+Mac-OS) : pip install -U monk-cpu
  • Google Colab   : pip install -U monk-colab
  • Kaggle              : pip install -U monk-kaggle

For More Installation instructions visit: Link




Study Roadmaps




Documentation




TODO-2020

Features

  • Model Visualization
  • Pre-processed data visualization
  • Learned feature visualization
  • NDimensional data input - npy - hdf5 - dicom - tiff
  • Multi-label Image Classification
  • Custom model development

General

  • Functional Documentation
  • Tackle Multiple versions of libraries
  • Add unit-testing
  • Contribution guidelines
  • Python pip packaging support

Backend Support

  • Tensorflow 2.0 provision support with v1
  • Tensorflow 2.0 complete
  • Chainer

External Libraries

  • TensorRT Acceleration
  • Intel Acceleration
  • Echo AI - for Activation functions


Connect with the project contributors



Copyright

Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Owner
Tessellate Imaging
Computer Vision and Deep Learning Consultance and Development
Tessellate Imaging
Resilient projection-based consensus actor-critic (RPBCAC) algorithm

Resilient projection-based consensus actor-critic (RPBCAC) algorithm We implement the RPBCAC algorithm with nonlinear approximation from [1] and focus

Martin Figura 5 Jul 12, 2022
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022
Baseline and template code for node21 detection track

Nodule Detection Algorithm This codebase implements a baseline model, Faster R-CNN, for the nodule detection track in NODE21. It contains all necessar

node21challenge 11 Jan 15, 2022
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
One Million Scenes for Autonomous Driving

ONCE Benchmark This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset. The code is mainly based on OpenPCDet.

148 Dec 28, 2022
End-to-end speech secognition toolkit

End-to-end speech secognition toolkit This is an E2E ASR toolkit modified from Espnet1 (version 0.9.9). This is the official implementation of paper:

Jinchuan Tian 147 Dec 28, 2022
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022
A PyTorch-centric hybrid classical-quantum machine learning framework

torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do

MIT HAN Lab 400 Jan 02, 2023
Voila - Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
ivadomed is an integrated framework for medical image analysis with deep learning.

Repository on the collaborative IVADO medical imaging project between the Mila and NeuroPoly labs.

144 Dec 19, 2022