[NeurIPS'21] Shape As Points: A Differentiable Poisson Solver

Overview

Shape As Points (SAP)

Paper | Project Page | Short Video (6 min) | Long Video (12 min)

This repository contains the implementation of the paper:

Shape As Points: A Differentiable Poisson Solver
Songyou Peng, Chiyu "Max" Jiang, Yiyi Liao, Michael Niemeyer, Marc Pollefeys and Andreas Geiger
NeurIPS 2021 (Oral)

If you find our code or paper useful, please consider citing

@inproceedings{Peng2021SAP,
 author    = {Peng, Songyou and Jiang, Chiyu "Max" and Liao, Yiyi and Niemeyer, Michael and Pollefeys, Marc and Geiger, Andreas},
 title     = {Shape As Points: A Differentiable Poisson Solver},
 booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
 year      = {2021}}

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called sap using

conda env create -f environment.yaml
conda activate sap

Now, you can install PyTorch3D 0.6.0 from the official instruction as follows

pip install pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py38_cu102_pyt190/download.html

And install PyTorch Scatter:

conda install pytorch-scatter -c pyg

Demo - Quick Start

First, run the script to get the demo data:

bash scripts/download_demo_data.sh

Optimization-based 3D Surface Reconstruction

You can now quickly test our code on the data shown in the teaser. To this end, simply run:

python optim_hierarchy.py configs/optim_based/teaser.yaml

This script should create a folder out/demo_optim where the output meshes and the optimized oriented point clouds under different grid resolution are stored.

To visualize the optimization process on the fly, you can set o3d_show: Frue in configs/optim_based/teaser.yaml.

Learning-based 3D Surface Reconstruction

You can also test SAP on another application where we can reconstruct from unoriented point clouds with either large noises or outliers with a learned network.

For the point clouds with large noise as shown above, you can run:

python generate.py configs/learning_based/demo_large_noise.yaml

The results can been found at out/demo_shapenet_large_noise/generation/vis.

As for the point clouds with outliers, you can run:

python generate.py configs/learning_based/demo_outlier.yaml

You can find the reconstrution on out/demo_shapenet_outlier/generation/vis.

Dataset

We have different dataset for our optimization-based and learning-based settings.

Dataset for Optimization-based Reconstruction

Here we consider the following dataset:

Please cite the corresponding papers if you use the data.

You can download the processed dataset (~200 MB) by running:

bash scripts/download_optim_data.sh

Dataset for Learning-based Reconstruction

We train and evaluate on ShapeNet. You can download the processed dataset (~220 GB) by running:

bash scripts/download_shapenet.sh

After, you should have the dataset in data/shapenet_psr folder.

Alternatively, you can also preprocess the dataset yourself. To this end, you can:

Usage for Optimization-based 3D Reconstruction

For our optimization-based setting, you can consider running with a coarse-to-fine strategy:

python optim_hierarchy.py configs/optim_based/CONFIG.yaml

We start from a grid resolution of 32^3, and increase to 64^3, 128^3 and finally 256^3.

Alternatively, you can also run on a single resolution with:

python optim.py configs/optim_based/CONFIG.yaml

You might need to modify the CONFIG.yaml accordingly.

Usage for Learning-based 3D Reconstruction

Mesh Generation

To generate meshes using a trained model, use

python generate.py configs/learning_based/CONFIG.yaml

where you replace CONFIG.yaml with the correct config file.

Use a pre-trained model

The easiest way is to use a pre-trained model. You can do this by using one of the config files with postfix _pretrained.

For example, for 3D reconstruction from point clouds with outliers using our model with 7x offsets, you can simply run:

python generate.py configs/learning_based/outlier/ours_7x_pretrained.yaml

The script will automatically download the pretrained model and run the generation. You can find the outputs in the out/.../generation_pretrained folders.

Note config files are only for generation, not for training new models: when these configs are used for training, the model will be trained from scratch, but during inference our code will still use the pretrained model.

We provide the following pretrained models:

noise_small/ours.pt
noise_large/ours.pt
outlier/ours_1x.pt
outlier/ours_3x.pt
outlier/ours_5x.pt
outlier/ours_7x.pt
outlier/ours_3plane.pt

Evaluation

To evaluate a trained model, we provide the script eval_meshes.py. You can run it using:

python eval_meshes.py configs/learning_based/CONFIG.yaml

The script takes the meshes generated in the previous step and evaluates them using a standardized protocol. The output will be written to .pkl and .csv files in the corresponding generation folder that can be processed using pandas.

Training

Finally, to train a new network from scratch, simply run:

python train.py configs/learning_based/CONFIG.yaml

For available training options, please take a look at configs/default.yaml.

This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

1 Dec 24, 2021
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Panoptic Mapping This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based

ETHZ ASL 194 Dec 20, 2022
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
YOLOX + ROS(1, 2) object detection package

YOLOX + ROS(1, 2) object detection package

Ar-Ray 158 Dec 21, 2022
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 08, 2023
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
Gradient Step Denoiser for convergent Plug-and-Play

Source code for the paper "Gradient Step Denoiser for convergent Plug-and-Play"

Samuel Hurault 11 Sep 17, 2022
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021

crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex

182 Dec 20, 2022
Convnext-tf - Unofficial tensorflow keras implementation of ConvNeXt

ConvNeXt Tensorflow This is unofficial tensorflow keras implementation of ConvNe

29 Oct 06, 2022
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
Orthogonal Over-Parameterized Training

The inductive bias of a neural network is largely determined by the architecture and the training algorithm. To achieve good generalization, how to effectively train a neural network is of great impo

Weiyang Liu 11 Apr 18, 2022
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022